

2013 VERMONT ENERGY EFFICIENCY POTENTIAL STUDY UPDATE

FINAL REPORT

Prepared for: VERMONT PUBLIC SERVICE DEPARTMENT

March 2014

GDS Associates, Inc. 1850 Parkway Place Suite 800 Marietta, GA 30067 770.425.8100 770.426.0303 (Fax) www.gdsassociates.com

TABLE OF CONTENTS

1	EXE	EXECUTIVE SUMMARY											
	1.1	Study Scope	1										
	1.2	Results Overview	3										
2	Key Updates to the 2013 Vermont Electric Energy Efficiency Potential Study 6												
	2.1	Load Forecast Update	6										
	2.2	Avoided Costs Update	6										
	2.3	Measure List Update	6										
	2.4	Measure Characterization Update	7										
		2.4.1 Savings, costs, and Useful Lives	7										
		2.4.2 Residential Lighting	7										
		2.4.3 Equipment Saturation	7										
	2.5	Methodological Updates	8										
		2.5.1 Maximum Achievable Market Adoption	8										
		2.5.2 Behavioral Program Impacts/Program Lift	9										
		2.5.3 Early Replacement	. 10										
		2.5.4 Non-Incentive Costs	. 10										
		2.5.5 Net-to-Gross Assumptions	. 11										
3	RES	IDENTIAL ENERGY EFFICIENCY POTENTIAL ESTIMATES (2014 TO 2033)	.12										
	3.1	Energy Efficiency Measures Examined	. 13										
	3.2	Residential Sector Savings Methodology Overview	.14										
	3.3	Residential Maximum Achievable Savings Potential	. 16										
	3.4	Impact of Behavioral Measures on Residential Savings Potential	. 22										
	3.5	Residential Maximum Achievable Potential Benefits & Costs	. 22										
4	COM	AMERCIAL AND INDUSTRIAL ENERGY EFFICIENCY POTENTIAL ESTIMATES (2014 TO 2033	3)26										
	4.1	Energy Efficiency Measures Examined	. 27										
	4.2	Commercial and Industrial Sector Savings Methodology Overview	. 28										
	4.3	Non-Residential Maximum Achievable Savings Potential	. 29										
	4.4	Impact of OMYA on Non-Residential Savings Potential	. 33										
	4.5	Non-Residential Maximum Achievable Potential Benefits & Costs	. 33										
5	OVE	ERALL CONCLUSIONS AND RECOMMENDATIONS	. 35										
	5.1	Differences Between the 2013 and 2011 Vermont Electric Energy Efficiency Potential Studies	35										
	5.2	Review of Maximum Achievable Results for the State	. 35										

LIST OF FIGURES

Figure 1-1: 2033 DSM Potential Savings Summary for State of Vermont	3
Figure 3-1: Summary of Residential Energy Efficiency Potential as a % of 2033 Forecast - VT Statewide	12
Figure 3-2: Residential Sector Savings Methodology - Bottom-Up Approach	15
Figure 3-3: Residential Sector End-Use Savings as a % of 2020 Maximum Achievable Potential	17
Figure 3-4: Residential Sector End-Use Savings as a % of 2033 Maximum Achievable Potential	17
Figure 4-1: 2033 Summaries of Commercial & Industrial Energy Efficiency Potential	26
Figure 4-2: Commercial/Industrial Sector Methodology – Top-Down Approach	29
Figure 4-3: Sector End-use Savings as a % of Total Achievable Potential – 2033	.31

LIST OF TABLE

1 EXECUTIVE SUMMARY

The Vermont Public Service Department (PSD) commissioned GDS Associates, Inc. to conduct a limited update to the 2011 study¹ of the potential for electric energy efficiency to reduce electric consumption and peak demand throughout the State of Vermont. The 2013 edition of the study incorporates several updates, including updates to the load forecasts, avoided costs and energy efficiency measure assumptions. This energy efficiency potential study provides reliable estimates of how much of Vermont's future electric service needs could be met through energy efficiency. The authors of this report emphasize that only energy efficiency measures that have a benefit-cost ratio of greater than or equal to 1.0 under the Vermont societal test are considered to be cost effective.

This technical memorandum presents results from the evaluation of opportunities for energy efficiency programs in the service areas of Vermont's two energy efficiency utilities. The Vermont Public Service Board (Board) has appointed the Burlington Electric Department (BED) as the EEU for the City of Burlington, and the Board has appointed the Vermont Energy Investment Corporation as the EEU for the remainder of the State, under the name "Efficiency Vermont" (EVT). For purposes of this report, "BED" will be used to refer to the area served by the Burlington Electric Department, and "EVT" will be used to refer to the area served by VEIC.

Estimates of technical potential, economic potential, and maximum achievable potential from 2014-2033 (a 20-year period) are provided for the residential and commercial/industrial (C&I) sectors. All results were developed using customized residential and commercial/industrial (C&I) sector-level potential assessment computer models and Vermont-specific cost effectiveness criteria including the most recent Vermont avoided cost projections for electricity and other fuels. The study relied heavily on recent Vermont market assessment reports of residential and commercial building and equipment characteristics. These market assessment reports provided valuable insight regarding the current saturation of electrical equipment and baseline levels of energy efficiency throughout the state of Vermont.

The results of this study provide detailed information on energy efficiency measures that are cost effective and have potential kWh and kW savings. The data used for this report were the best available at the time this analysis was developed.

1.1 STUDY SCOPE

The study examines the potential to reduce electric consumption and peak demand through the implementation of energy efficiency technologies and practices in residential, commercial, and industrial facilities. The study assessed energy efficiency potential throughout the EVT and BED service areas over twenty years, from 2014 through 2033.

The study had the following main objectives:

- □ Update the load forecasts;
- □ Update the avoided costs;
- □ Update measure lists and assumptions;
- **D** Review market assessment studies to update baseline saturation data

http://publicservice.vermont.gov/sites/psd/files/Topics/Energy_Efficiency/Energy%20Efficiency%20Potential%202 011.pdf

□ Re-evaluate the maximum achievable potential for the 2014-2033 timeframe

The scope of this study distinguishes among three types of energy efficiency potential; (1) technical, (2) economic, and (3) maximum achievable. The definitions used in this study for energy efficiency potential estimates are as follows:

- □ **Technical Potential** is the theoretical maximum amount of energy use that could be displaced by efficiency, disregarding all non-engineering constraints such as cost-effectiveness and the willingness of end-users to adopt the efficiency measures. It is often estimated as a "snapshot" in time assuming immediate implementation of all technologically feasible energy saving measures, with additional efficiency opportunities assumed as they arise from activities such as new construction.²
- □ Economic potential refers to the subset of the technical potential that is economically costeffective as compared to conventional supply-side energy resources. Both technical and economic potential are theoretical numbers that assume immediate implementation of efficiency measures, with no regard for the gradual "ramping up" process of real-life programs. In addition, they ignore market barriers to ensuring actual implementation of efficiency. Finally, they only consider the costs of efficiency measures themselves, ignoring any programmatic costs (e.g., marketing, analysis, administration) that would be necessary to capture them.³
- □ Achievable potential is the amount of energy use that efficiency can realistically be expected to displace assuming the most aggressive program scenario possible (e.g., providing end-users with payments for the entire incremental cost of more efficiency equipment). This is often referred to as maximum achievable potential. Achievable potential takes into account real-world barriers to convincing end-users to adopt efficiency measures, the non-measure costs of delivering programs (for administration, marketing, tracking systems, monitoring and evaluation, etc.), and the capability of programs and administrators to ramp up program activity over time.⁴ The achievable potential for this study is a maximum achievable potential because the incentives are assumed to be 100% of the measure incremental cost.

Limitations to the scope of study: As with any assessment of energy efficiency potential, this study necessarily builds on a large number of assumptions, including the following:

- **D** Energy efficiency measure lives, measure savings and measure costs
- □ The discount rate for determining the net present value of future savings
- □ Projected penetration rates for energy efficiency measures
- □ Projections of electric generation avoided costs for electric capacity and energy
- D Projections of avoided costs for externalities (e.g. carbon)
- □ Projections of avoided costs for other fuels (heating oil, natural gas, propane)
- □ Electric transmission and distribution avoided costs
- □ Project budgetary limitations prevented GDS from performing a full-scale update

² National Action Plan for Energy Efficiency, "Guide for Conducting Energy Efficiency Potential Studies", page 2-4.

³ Id.

⁴ Id.

While the authors have sought to use the best available data, there are many assumptions where there may be reasonable alternative assumptions that would yield somewhat different results. Furthermore, while the lists of measures examined in this study represent most commercially available measures, as well as several measures that are considered emerging technologies, these measure lists are not exhaustive.

1.2 RESULTS OVERVIEW

Figure 1-1, presented below, shows that cost effective electric energy efficiency resources can play a significantly expanded role in the Vermont energy resource mix over the next 20 years. For the total State of Vermont, the technical potential for energy efficiency is 30.0% of forecasted kWh sales in 2033, twenty years from now.⁵ The energy efficiency economic and achievable potential in 2033 are 27.7% and 23.4% of forecasted kWh sales in 2033. The technical, economic and achievable electric demand savings for the state as a whole are 22.4%, 21.3% and 17.8% respectively, of forecasted winter peak demand in 2033. The technical, economic and savings for the state as a whole are 23.1%, 22.2% and 18.1%, respectively, of forecasted summer peak demand in 2033.

Table 1-1 below presents detailed information on the technical, economic and achievable energy efficiency savings potential for all sectors combined for the BED service area, for the EVT service area, and for the BED and EVT service areas combined. Further information on the energy efficiency potential by sector is provided in Sections 3 and 4 of this memorandum.

⁵ All energy and demand savings presented in this report are at the end-consumer (meter) level unless specifically noted otherwise in this report.

		% of 2033	Winter	% of 2033	Summer	% of 2033
	MWh	MWh Sales	MW	Winter Peak	MW	Summer Peak
		All Sectors Com	bined			
State-wide						
Technical Potential	1,857,938	30.0%	248	22.4%	296	23.1%
Economic Potential	1,713,770	27.7%	235	21.3%	285	22.2%
Maximum Achievable Potential	1,450,000	23.4%	197	17.8%	232	18.1%
EVT			•			
Technical Potential	1,736,976	30.2%	232	22.4%	279	23.2%
Economic Potential	1,602,098	27.8%	221	21.3%	268	22.3%
Maximum Achievable Potential	1,351,816	23.5%	184	17.7%	218	18.1%
BED						
Technical Potential	120,962	28.4%	15	23.3%	18	21.3%
Economic Potential	111,673	26.2%	15	22.4%	17	20.5%
Maximum Achievable Potential	98,184	23.0%	12	19.1%	14	17.5%
		Residential Se	ector			
State-wide						
Technical Potential	992,767	40.4%	166	33.3%	183	40.1%
Economic Potential	914,996	37.2%	156	31.2%	174	38.1%
Maximum Achievable Potential	723,116	29.4%	124	24.8%	131	28.7%
EVT						
Technical Potential	948,381	40.0%	158	33.0%	175	39.9%
Economic Potential	873,819	36.9%	148	30.9%	166	38.0%
Maximum Achievable Potential	689,083	29.1%	117	24.5%	125	28.5%
BED						
Technical Potential	44,387	49.1%	8	41.2%	8	45.2%
Economic Potential	41,177	45.6%	8	39.0%	8	42.6%
Maximum Achievable Potential	34,033	37.7%	6	31.4%	6	33.3%
	Com	mercial/Indust	rial Sector			
State-wide						
Technical Potential	865,171	22.2%	82	13.5%	114	13.7%
Economic Potential	798,774	20.5%	80	13.2%	111	13.4%
Maximum Achievable Potential	726,884	18.6%	73	12.0%	101	12.2%
EVT						
Technical Potential	788,596	22.1%	75	13.4%	104	13.7%
Economic Potential	728,278	20.4%	73	13.1%	102	13.3%
Maximum Achievable Potential	662,733	18.6%	67	11.9%	92	12.1%
BED						
Technical Potential	76,575	22.8%	7	15.3%	10	14.8%
Economic Potential	70,495	21.0%	7	14.9%	9	14.5%
Maximum Achievable Potential	64,151	19.1%	6	13.6%	9	13.2%

Table 1-1: DSM Potential Savings Detail (by Region and Customer Class)

Table 1-2 below presents the results of the Vermont Societal Test calculations for the achievable potential for three areas: the BED service area, the EVT service area, and the combined service areas of EVT and BED. It is clear that the level of kWh and kW savings represented by the achievable potential is very cost effective, with a Societal Test benefit/cost ratio for the overall state of 3.6 to 1. This means that for every dollar spent by Vermont ratepayers on energy efficiency programs, approximately \$3.60 of societal benefits are accrued.

D/C Datio
D/C Rauo
3.6
3.6
3.3

2 KEY UPDATES TO THE 2013 VERMONT ELECTRIC ENERGY EFFICIENCY POTENTIAL STUDY

This section briefly discusses the key updates to the 2013 potential study. The load forecasts, avoided costs and other general modeling assumptions, measure lists and measure assumptions, and sector analysis methodologies have been revised and updated to varying degrees since the release of the previous potential study in 2011.

2.1 LOAD FORECAST UPDATE

The PSD and BED each provided load forecasts, for the state as a whole and the BED service area, respectively, that assume no future energy efficiency programs. The compound annual average growth rate for total annual kWh sales under these hypothetical "no-DSM" forecasts is hovering just over 1% growth annually over the study timeframe. The expected growth rate for kWh sales is slightly higher for the state overall compared to the BED service area. For more details regarding the new statewide load forecast, refer to the separate load forecast update memo which compares the 2011 forecast to the current forecast. This document is included as Attachment A.

It is important to note that the load forecast for the state includes the OMYA portion of the forecast. GDS understands that the OMYA energy efficiency potential will not count towards any statewide goals, but the forecast includes the OMYA load forecast in order to allow for the calculation of the total cost to achieve the non-residential energy efficiency potential in the state of Vermont. Section 4.4 of the memo provides the estimates of non-residential energy efficiency potential, and includes a discussion of the OMYA contribution to the total non-residential sector energy efficiency potential.

2.2 AVOIDED COSTS UPDATE

The avoided electric and non-electric supply costs for this Vermont energy efficiency potential study consist of the electric supply costs avoided due to the implementation of electric energy efficiency programs. These assumptions have been revised since 2011. For example, the avoided costs of non-electric fuels now include benefits for avoided carbon emissions (previously only the electric avoided costs factored in avoided carbon emissions). GDS factored the avoided carbon emissions into the avoided costs at the direction of the PSD. For more details regarding the new revised avoided costs and other general modeling assumption revisions, refer to the separate avoided cost update memo GDS which compares the 2011 assumptions to the 2013 assumptions. This document is included as Attachment B.

2.3 MEASURE LIST UPDATE

Energy efficiency measure lists were based savings listed in the latest Vermont Technical Reference Manual⁶ as well as the analysis team's existing knowledge and current databases of electric end-use technologies and energy efficiency measures, and were supplemented as necessary to include other technology areas of interest to the PSD staff, VEIC and BED. The study scope included measures and practices that are currently commercially available as well as emerging technologies. The commercially available measures should be of most immediate interest to energy efficiency program planners.

⁶ Vermont Technical Reference User Manual (TRM) Measure Savings Algorithms and Cost Assumptions, November 4, 2013.

Per the scope of the study, GDS generally limited the measure list update to updating measures listed in the TRM and to be consistent with the previous potential study. GDS did perform research on several emerging technologies such as cold-climate ductless mini-split heat pumps, solar water heaters, and smart thermostats to identify new savings opportunities and to update previous assumptions with more current estimates of savings.

2.4 MEASURE CHARACTERIZATION UPDATE

2.4.1 Savings, costs, and Useful Lives

The measure characterization update was primarily focused on updating the modeling assumptions from the previous potential study which were from the TRM. VEIC provided an updated version of the TRM which GDS used to perform these updates. GDS also researched TRMs from other states and evaluation reports to help populate the database with the most current assumptions possible that are relevant in the state of Vermont. GDS updated the modeled energy savings for several weatherization and HVAC equipment measures based on updated information on housing characteristics in the state which were identified through the most recent and available statewide baseline studies. The costs and useful lives were reviewed and updated as necessary.

2.4.2 Residential Lighting

In the 2011 study, residential energy efficiency savings potential took into account scheduled federal upgrades to the energy efficiency of incandescent lighting. These energy efficiency standards assumed required improvements to incandescent technology beginning in both 2013 as well as 2020. The 2011 study assumed that the required 2020 improvements to federal lighting standards would shift the market so that CFL bulbs would become the new baseline. In addition, the 2011 study used the latest available declining cost projections for LED lighting at that time.

The 2013 study modified the lighting input assumptions to account for more up-to-date cost projections for LED lighting through 2020. The 2013 analysis also incorporates an annual shift in LED bulb purchases compared to CFL bulbs over the next two decades. The 2013 update assumed LED sales will be approximately equal to CFL bulb purchases beginning in 2017, and will be the dominant bulb type for all installations in subsequent years. Finally, the 2013 study includes LED specialty bulbs as an alternative to CFL-specialty bulbs.

2.4.3 Equipment Saturation

In order to assess the amount of energy efficiency savings still available, estimates of the current saturation of baseline equipment and energy efficiency measures are necessary. It is important to note that GDS utilized the same method that was used for the previous study to account for the stock of existing efficient equipment and its effect on the energy efficiency savings potential. GDS evaluated the energy efficiency potential assuming that naturally occurring energy savings are already largely reflected in the electricity sales forecast used in this study. Therefore, the approach recognizes the current saturation of energy efficient equipment as the portion of the market that is not likely to be impacted by future DSM program efforts⁷.

Residential:

Where possible, EVT baseline equipment and energy efficient equipment saturations were updated from the 2009 Nexus Market Research reports, "Analysis of Onsite Audits in Existing Homes in Vermont

⁷ Section 5.11 of the final report provided to the PSD in March 2011 includes a full discussion of this issue as well as the implications of this approach on the energy efficiency potential estimates.

FINAL" (June 2009) and "Overall Report Vermont Residential New Construction Study" (July 2009), to the 2012 Nexus Market Research reports "Vermont Single-Family Existing Homes Overall Report" (June 2013), "Survey Analysis of Owners of Existing Homes in Vermont" (Feb. 2013), "Vermont Multifamily Onsite Report" (June 2013), and the "Vermont Residential New Construction Baseline Study Analysis of On-Site Audits" (June 2013) report. In addition to these documents, GDS also relied on more up-to-date ENERGY STAR unit shipment data reports for select consumer electronic energy efficient equipment saturations.

The BED territory is in the process of completing an updated appliance saturation study. The results of this update were not available at the time of the GDS analysis. As a result, the baseline and energy efficient equipment saturations relied primarily on the prior appliance study conducted for BED by KEMA in 2005. In order to recognize the rapidly changing consumer electronics end-use and efficient lighting market shares, GDS updated the majority of the 2005-vintage consumer electronic and lighting saturations to reflect the results of the 2012 NMR statewide baseline studies.

Commercial:

The statewide baseline equipment and energy efficient equipment saturations from the 2011 study were updated in accord with the findings from Navigant's 2011 Vermont Market Characterization and Assessment Studies for Business Sector for Existing Buildings and New Construction. The energy efficient equipment measures were reviewed to incorporate changes in baseline and efficient equipment in the Efficiency Vermont Technical Reference Manual 2013-83 in comparison to the 2010-64 version used in the 2011 potential study.

2.5 METHODOLOGICAL UPDATES

In addition to updating the avoided costs, load forecasts, and measure-specific assumptions, the 2013 update also reflects select revisions and refinements to the methodology employed to calculate electric savings potential. As in 2011, the residential sector employed a "bottom-up" approach to calculate potential while the non-residential sector used a "top-down" approach that disaggregates the load forecast in building types, end-uses, and measure-level savings. A full discussion of the methodology are discussed below.

2.5.1 Maximum Achievable Market Adoption

Maximum Achievable Potential describes the economic potential that could be achieved over a given time period under the most aggressive program scenario. Achievable potential takes into account barriers that hinder consumer adoption of energy efficiency measures such as financial, political and regulatory barriers, the administrative and marketing costs associated with efficiency programs, and the capability of programs and administrators to ramp up activity over time.

Residential:

In the maximum achievable scenario, achievable potential represents the attainable savings if the market penetration of high efficiency electric appliances and equipment reaches 80%-90% of the eligible market from 2014-2033. The 90% target achievable penetration was assumed for the appliances, appliances/WH, consumer electronics, HVAC (Equipment), and Water Heating end-uses. A target market adoption rate of 80% was assumed for fuel-switching measures, lighting, HVAC (Envelop) and other end-uses. The target market adoption rates assume incentives that are equal to 100% incremental cost (replace-on-burnout, or 100% of the full install cost (retrofit and/or early replacement/retirement). These assumptions were consistent with the 2011 analysis.

The 2013 update does, however, modify the calculated timing for reaching the ultimate market adoption rate. In 2011, the targeted maximum adoption rate was not fully realized until the final year of the analysis (i.e. installations occurred annually, but the full 80%-90% of the remaining eligible market was not achieved until the final year of the analysis). In 2013, the updated model calculates the expected annual turnover of all remaining eligible equipment, and the targeted adoption rate is achieved over the course of the natural replacement of the inefficient equipment.⁸ This approach accelerates the achievement of the target market adoption rate for those measures with an effective useful life (EUL) less than the 20-year study period. For example, an energy efficiency measure with a useful life of 10 years would achieve the targeted maximum adoption rate over the initial decade of the analysis in this updated approach. Installations in the second decade of the analysis would serve to maintain the assumed maximum achievable adoption.

Commercial:

In the maximum achievable scenario, achievable potential represents the attainable savings if the market penetration of high efficiency electric appliances and equipment reaches 90% of the eligible market from 2014-2033. The target market adoption rates assume incentives that are equal to 100% incremental cost (replace-on-burnout, or 100% of the full install cost (retrofit and/or early replacement/retirement). These assumptions were consistent with the 2011 analysis.

2.5.2 Behavioral Program Impacts/Program Lift

Absent energy efficiency impacts through improvements to federal codes and standards, a consumer's choice is critical to market acceptance of energy efficient technologies. Behavioral programs can not only impact a customer's routine behavior (i.e. turning off lights/energy conservation), but can also engage consumers and impact behavior when making purchasing decisions.

Residential:

In 2011, behavioral program impacts were analyzed as energy efficiency measure options that would provide additional savings (through conservation) above and beyond the savings achieved through the installation of energy efficiency measures. The 2011 analysis assumed traditional installation of energy efficient technologies would reduce household consumption by \sim 30% and that behavioral programs could achieve an additional savings of \sim 1%-3% of annual consumption through conservation savings.

In the 2013 update the Vermont PSD requested that behavior program impacts be quantified based on their ability to educate and encourage Vermont electric consumers to purchase and install additional hard-wired energy efficiency measures (program lift) rather than the potential savings associated with increased conservation associated with changes in human behavior (such as turning off the lights). The PSD indicated to GDS that it is not considering behavioral measures to offer a "real" long term direct resource for energy savings at the present time. For the 2013 update, the PSD indicated that GDS should model the energy efficiency potential using the assumption that program lift associated with behavioral programs would increase the maximum achievable market adoption rate of hard-wired measures by 1% beyond what could be attained solely through the offering of 100% incentives. The logic behind this assumption is that 100% incentives could encourage up to 90% adoption of measures in most end uses, and that behavioral programs could encourage an additional 1% adoption of measures which would not otherwise be realized.

⁸ There are two exceptions to this methodology. The methodology was edited to allow all retrofit measure opportunities with a useful life greater than 25 years to be installed over the 20 year period. Additionally, the methodology was edited to allow early retirement opportunities (i.e. secondary refrigerators) to occur over the entire duration of the 20-year analysis time frame.

In an effort to recognize the costs associated with behavioral programs, GDS assumed an average annual cost of \$10 per Vermont residential consumer. These costs assume a large-scale rollout that can be directed to nearly all Vermont homeowners versus a more limited or focused approach (i.e. in-home energy displays) that may be more costly to implement. Still, these assumed costs are largely dependent on the scale of a behavioral feedback program roll-out, and may be larger (or smaller) in practice. All costs associated with additional measure installations were included at the specific measure/end-use level.

Additional detail about the impact of behavioral programs/program lift can be found in Section 3.4.

Commercial:

The behavioral programs were addressed consistently with the 2011 study. The commercial model is derived from end-use energy allocation and the feedback measures allocate savings to each end-use. The increased equipment adoption due to behavioral program would need to be considered outside the full technical potential modeling.

2.5.3 Early Replacement

In the 2011 study, the majority of measures were analyzed under both the replace-on-burnout and early replacement option. In general, 50% of the eligible remaining market was reserved for early replacement. The remaining pool of measures was replaced over the course of a natural replacement cycle, when a piece of equipment is at the end of its useful life. GDS employed the same approach for the 2013 analysis (50/50 early replacement vs. replace on burnout). However, GDS narrowed the list of energy efficiency measures applicable for early replacement to only those included in the Vermont TRM. In the residential sector, early replacement measures were limited to refrigerators, freezers, and clothes washers. In the commercial sector, early replacement was applicable to room air conditioners (list any other measures).

2.5.4 Non-Incentive Costs

As noted above, incentives in 2011 and 2013 were assumed to be equal to 100% of the measure cost. In addition, an overall non-incentive or administrative cost per first-year kWh-saved was assigned to each measure in order to determine overall program budgets required to achieve the maximum achievable savings and calculate overall cost-effectiveness. Administrative costs in the 2011 analysis were determined based on the 2007-2009 average of non-incentive costs reported by EVT in their annual report filings⁹. In all subsequent years, the administrative costs per first-year kWh-saved were escalated by the annual rate of inflation. It is important to note that non-incentive costs refer to the Total Efficiency Vermont Cost reported by EVT net of all incentives to participants and/or trade allies. It does not include participant or other third party costs.

Residential:

Non-incentive costs for the 2013 update were calculated using the same approach as the 2011 analysis, but were based on the latest available annual report (2012)¹⁰. Overall, non-incentive costs are slightly

⁹ Non-incentive costs refer to the Total Efficiency Vermont Costs reported by EVT net of all incentives to participants and/or trade allies. It does not include participant or other third party costs. Performance incentives and operations fees, along with evaluation budgets are additional costs to deliver programs that are not included in this calculation.

¹⁰ Only 2012 data was utilized because of a change in VEIC accounting practices beginning in 2012. Reliance on nonincentive cost data provided in earlier annual reports would inaccurately reflect the non-incentive portion of Efficiency Vermont's resource acquisition costs.

lower in the 2013 update compared to 2011. A non-incentive cost of \$1.36 per first-year kWh-saved was used for all new construction measures based on 2012 annual report for EVT's current Residential New Construction Program (compared to \$0.82 in the 2011 study). Appliances, electronics, lighting, and select easy-to-install retrofit measures were assigned an administrative cost of \$0.05 per first-year kWh-saved based on the 2012 annual report for the current Residential Efficient Products Program (also ~\$0.05 in 2011). All other measures were assigned an administrative cost per first-year kWh-saved of \$0.67 based on the latest 2012 annual report for the Residential Existing Building Program (compared to \$0.48 in 2011).

Commercial:

Non-incentive costs for the 2013 update were calculated using the same approach as the 2011 analysis, but were based on the latest available annual report (2012). The non-incentive costs are \$0.13 per first-year kWh-saved for new construction and \$0.09 per first-year kWh for existing buildings.

2.5.5 Net-to-Gross Assumptions

For this potential study update, GDS utilized the same approach with respect to estimates of free ridership and spillover that were used for the previous study. GDS has assumed a NTG ratio of 1.0 for the non-residential sector. GDS has assumed a NTG ratio of 1.0 for all residential measures with the exception of two lighting measures. GDS has assumed a NTG ratio of 0.6 for standard CFL lighting measures, and a NTG ratio of 0.8 for specialty CFL lighting measures. These estimates are based on a 2013 EVT document titled "Gross-to-Net Factors 2012.11"

¹¹ Section 5.12 of the final report provided to the PSD in March 2011 includes a full discussion of net-to-gross issues.

3 RESIDENTIAL ENERGY EFFICIENCY POTENTIAL ESTIMATES (2014 TO 2033)

This section of the report presents the estimates of electric technical, economic, and maximum achievable potential for the state of Vermont as well as the EVT and BED territories separately.

Figure 3-1 and Table 3-1 presented below, summarize the technical, economic, and achievable savings potential (as a % of forecast sales) for the Vermont service area by 2033. The maximum achievable potential estimates are based primarily on a market penetration scenario that targets the installation of energy efficient equipment in 80-90% of the remaining eligible market by 2033. If the targeted market penetration for all remaining eligible cost-effective measures can be reached over the next two decades, the maximum achievable potential for electric energy efficiency savings in this sector is approximately 29.4% of projected residential sales (723,116 MWh). Energy efficiency measures and programs can also serve to lessen peak demand, creating a reduction of roughly 25% of the 2033 residential winter peak (28.7% of the summer peak) in the maximum achievable potential scenario.

Table 3-1 also presents the separate technical, economic, and maximum achievable estimates for the EVT and BED service territories. In general the BED territory had slightly higher estimates of technical, economic, and achievable potential.¹² Of the combined 723,116 MWh of achievable potential energy

¹² Higher estimates of achievable potential are likely a result of several contributing factors. The BED saturation study was completed in 2005 and may not capture the most recent market changes in energy efficiency measure saturation compared to the 2011 NMR saturation data used in the EVT Territory. In addition, the BED residential load forecast has a lower annual growth rate than the growth rate found in the EVT residential forecast. As a result, the BED energy and demand savings potential appear larger relative to the 2033 BED forecast sales.

savings, the BED territory achievable electric energy savings was 34,033 MWh (37.7% of 2033 BED sales). The EVT territory was estimated to have a maximum achievable potential of 689,083 MWh (29.1% of 2033 EVT territory sales).

	En	ergy		Demand								
		% of 2033		% of 2033	Summer	% of 2033						
	MWh	MWh Sales	Winter MW	Winter Peak	MW	Summer Peak						
State-wide												
Technical Potential	992,767	40.4%	166	33.3%	183	40.1%						
Economic Potential	914,996	37.2%	156	31.2%		38.1%						
Maximum Achievable Potential	723,116	29.4%	124	24.8% 131		28.7%						
EVT												
Technical Potential	948,381	40.0%	158	33.0%	175	39.9%						
Economic Potential	873,819	36.9%	148	30.9%	166	38.0%						
Maximum Achievable Potential	689,083	29.1%	117	24.5%	125	28.5%						
BED												
Technical Potential	44,387	49.1%	8	41.2%	8	45.2%						
Economic Potential	41,177	45.6%	8	39.0%	8	42.6%						
Maximum Achievable Potential	34.033	37.7%	6	31.4%	6	33.3%						

Table 3-1: 2033 Summary of Residential Energy and Demand Savings Potential

3.1 ENERGY EFFICIENCY MEASURES EXAMINED

Seventy energy efficiency programs or measures were included in the energy savings analysis for the residential sector.¹³ Below, Table 3-2 provides a brief listing of the various residential energy efficiency programs or measures considered in this analysis. The list of energy efficiency measures examined was developed based on a review of the measures and programs included by other technical potential studies and measures included in the Vermont TRM.

End Use Type	End-Use Description	Measures/Programs Includes
Appliances	General Home Appliances	* Dehumidifiers
		* Refrigerators
		* Freezers
		* Refrigerator/Freezer Turn-In
Appliances/WH	Kitchen/Laundry	* Clothes Washers
		* Heat Pump Dryers
		* Dishwashers
Electronics	Home Electronics	* Controlled Power Strips
		* Internal Power Supplies
		* Laptops
		* Computer Monitors
		* Televisions (LED, LCD, Plasma)
		* Set Top Boxes
		* Misc. Consumer Electronics
HVAC (Envelope)	Building Envelope Upgrades	* Weatherization
		* Insulation Package
		* Energy Star Windows

Table 3-2: Measures and Programs Inclue	ded in the Residential Sector Analysis
---	--

¹³ After accounting for adjustments to different building types, replacement approaches, and housing characteristics, particularly for measures targets the space heating and cooling end use, the number grew to 330 measure permutations.

End Use Type	End-Use Description	Measures/Programs Includes
		* Comprehensive Shell Measures (New Construction)
HVAC (Equipment)	Heating/Cooling /Ventilation	* Efficient Central AC
	Equipment	* Efficient Room AC
		* Ductless mini-split heat pump
		* Efficient Furnace Fan Motors
		* Exhaust Fans
Lighting	Indoor/Outdoor Lighting	* Specialty CFL bulbs (<=15W)
		* Specialty CFL bulbs (>15W)
		* Standard CFL bulbs
		* Specialty LED bulbs
		* Standard LED bulbs
		* Indoor Lighting Controls
		* Outdoor Lighting Controls
		* Common Area – CFL Fixture (MF only)
		* Common Area – LED Fixture (MF only)
		* Common Area – Fluorescent Fixture (MF only)
Other	Miscellaneous Efficiency Measures	* Pool Pump Timer
		* 2-speed Pool Pump Motor
		* Variable speed Pool Pump Motor
		* Behavioral Measures ¹⁴
Water Heating	Domestic Hot Water	* Heat Pump WH
		* Solar WH (w/ Electric Back Up) – Emerging Tech.
		* Tank Wrap
		* Hot water Pipe Wrap
		* Low Flow Showerheads
		* Low Flow Faucet Aerators
		* Reverse Cycle Chillers – Emerging Tech. (MF Only)
		* Drain Water Heat Recovery Device (MF Only)
Fuel Switching	Miscellaneous	* Clothes Dryer - Fuel Switch
		* Electric Water Heater - Fuel Switch (LP, Nat Gas, Oil)
		* Primary Space Heat - Fuel Switch (MF Only), (Gas, LP,
		0il)

3.2 **Residential Sector Savings Methodology Overview**

The portfolio of measures includes retrofit, early retirement, and replace-on-burnout programmatic approaches to achieve energy efficiency savings. In the residential sector, a retrofit measure refers to the application of supplemental measures (such as the addition of a low-flow device to a showerhead); early retirement includes the replacement of operational equipment before the end of its remaining useful life.

Existing homes were divided into single family and multi-family home markets in order to account for differing equipment saturations and heating/cooling consumption. New homes were also included in the analysis. The analysis of the potential for energy efficiency savings is based on the most recent residential electric sales forecasts for the EVT and BED service territories for the years 2014 through 2033.

The residential sector analysis was modeled using what is considered a "bottom-up approach." The methodology is illustrated in Figure 3-2 below:

¹⁴ Refer to Section 2.5.2 for full discussion of the treatment of behavioral program impacts

Figure 3-2: Residential Sector Savings Methodology - Bottom-Up Approach

of Residential Homes

As shown in this figure, the methodology started at the bottom based on the number of residential customers (splitting them into single-family and multi-family customers as well as existing vs. new construction). From that point, estimates of the size of the eligible market were developed for each efficiency measure. For example, energy efficiency measures that affect electric water heating are only applicable to those homes in the EVT and BED territories that have electric water heating.

The core equation used in the residential sector energy efficiency technical potential analysis for each individual efficiency measure is shown below in Equation 3-1 below.

In instances where there were two (or more) competing technologies for the same electric end use, such as storage water heater tank wraps, heat pump water heaters and solar water heaters, a percent of the available population was assigned to each measure using the applicability factor. In the event that one of the competing measures was not found to be cost-effective, the homes assigned to that measure were transitioned over to the cost effective alternative (if any).

Fuel-switching was analyzed in this analysis for electric water heating, electric drying and primary space heating.¹⁵ These measures consist of replacement of electric equipment in favor of natural gas, oil, or propane units. Fuel switching was treated as a competing measure to other electric efficiency options. Therefore not all of the total eligible homes were included in the fuel switch options.

¹⁵ Primary space heat fuel switching was reserved for the multi-family sector only. The baseline saturation of primary electric space heat in the single family sector was deemed insignificant based on the results of the most recent end-use saturation studies.

3.3 RESIDENTIAL MAXIMUM ACHIEVABLE SAVINGS POTENTIAL

By 2033 the total residential energy efficiency maximum achievable potential is 723,116 MWh, or 29.4% of forecast residential sales in 2033. The maximum achievable potential scenario also achieves 124 MW of residential winter peak savings, or 24.8% of the 2033 residential winter peak forecast. Summer peak savings are estimated at 131 MW, or 28.7% of the residential summer peak forecast.

Α	chievable Potential				
	Energy (MWh)	Winter Peak Demand (MW)	Summer Peak Demand (MW)		
Water Heating	92,485	12.9	7.0		
Lighting	92,899	30.6	5.7		
Consumer Electronics	78,454	9.4	9.2		
Appliances/WH	14,660	4.4	2.6		
Other	35,633	0.0	24.4		
HVAC (Envelope)	99,623	13.4	36.1		
HVAC (Equipment)	89,384	89,384 22.6			
Appliances	51,618	4.8	6.4		
Fuel Switching	103,901	18.2	11.5		
Early Replacement	64,458	7.5	7.6		
TOTAL	723,116	124	131		
% of 2033 Residential Sales	29.4%	24.8%	28.7%		

Table 3-3: Maximum Achievable Energy and Demand Potential and % Share of Residential Forecast Energy Sales and Summer/Winter Peak Demand in 2033

Figures 3-3 and 3-4 show the maximum achievable potential by end-use in the years 2020 and 2033, respectively. Lighting is the leading share (24.4%) of the total 2020 maximum potential. As noted earlier, in 2020 new federal lighting standards go into increase the baseline energy standards for lighting technology in the U.S. The result is a significant drop-off in the potential for lighting savings in the residential. By 2033, lighting has decreased from 24.4% to 12.8% of the total maximum achievable potential. During this time, other end-uses such as consumer electronics and HVAC savings measures increase their share of the total maximum achievable potential.

Table 3-4 through Table 3-6 depict the cumulative annual energy and demand savings, by end-use, for the residential sector. Table 3-7 provides the incremental annual energy savings, by end-use, for the residential sector. In addition to the statewide maximum achievable potential, the maximum achievable potential for the EVT and BED service territories are also included.

Figure 3-3: Residential Sector End-Use Savings as a % of 2020 Maximum Achievable Potential

Figure 3-4: Residential Sector End-Use Savings as a % of 2033 Maximum Achievable Potential

Cumulative Annual MWh Savings - Max. Achievable																				
End-Use	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033
Appliances	5,644	11,524	17,439	23,321	29,158	34,955	40,748	46,508	48,003	49,483	50,920	52,341	52,530	52,469	52,376	52,331	52,201	51,988	51,780	51,618
Appliances/Water Heating	1,097	2,362	3,651	4,917	6,152	7,358	8,562	9,742	10,899	12,045	13,161	14,006	14,817	15,605	15,560	15,375	15,168	14,958	14,789	14,660
Consumer Electronics	18,468	36,936	55,404	73,873	77,591	78,454	78,454	78,454	78,454	78,454	78,454	78,454	78,454	78,454	78,454	78,454	78,454	78,454	78,454	78,454
HVAC (Envelope)	4,716	10,913	17,322	23,525	29,452	35,130	40,782	46,218	51,451	56,588	61,455	66,230	70,825	75,242	79,668	83,747	87,804	91,641	95,579	99,623
HVAC (Equipment)	5,270	10,905	16,593	22,230	27,799	33,307	38,808	44,256	49,653	55,024	60,329	65,610	70,847	76,036	81,229	84,154	86,958	89,689	89,759	89,384
Lighting	15,116	32,521	50,459	68,276	85,789	103,134	120,625	54,969	59,360	63,969	68,687	73,514	77,252	80,738	84,119	87,509	89,206	90,508	91,686	92,899
Water Heating	10,082	20,322	30,586	40,827	51,038	61,222	69,928	78,612	87,273	92,148	92,353	92,405	92,413	92,422	92,461	92,460	92,449	92,430	92,446	92,485
Other	3,584	7,369	11,184	14,972	18,721	22,441	26,156	29,842	33,500	37,144	37,167	36,978	36,736	36,497	36,298	36,142	35,989	35,833	35,719	35,633
Fuel-Switching	5,148	10,476	15,830	21,160	26,456	31,721	36,984	42,220	47,434	52,634	57,802	62,959	68,094	73,208	78,323	83,449	88,573	93,670	98,779	103,901
Early Retirement	8,161	16,322	24,483	26,834	29,186	31,537	33,889	36,240	38,592	40,943	43,295	45,646	47,998	50,349	52,701	55,052	57,404	59,755	62,107	64,458
Total	77,286	159,651	242,951	319,935	381,341	439,261	494,935	467,060	504,617	538,433	563,622	588,142	609,965	631,020	651,189	668,674	684,205	698,925	711,096	723,116
% of Annual Forecast Sales	3.6%	7.4%	11.0%	14.3%	16.8%	19.1%	22.4%	20.7%	22.2%	24.4%	25.1%	25.9%	26.4%	27.0%	27.5%	28.5%	28.3%	28.8%	29.0%	29.4%

Table 3-4: Cumulative Annual Residential Energy (MWh) Savings Potential by End Use for VT (Statewide), EVT Territory, and BED Territory

							Cumulati	ive Annual	MWh Savi	ngs - Max.	Achievabl	e								
End-Use	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033
Appliances	5,530	11,296	17,097	22,866	28,591	34,275	39,956	45,602	47,037	48,457	49,834	51,196	51,370	51,296	51,190	51,131	50,990	50,781	50,576	50,417
Appliances/Water Heating	1,061	2,289	3,543	4,772	5,971	7,142	8,310	9,453	10,575	11,686	12,766	13,586	14,371	15,134	15,090	14,907	14,700	14,491	14,324	14,196
Consumer Electronics	17,572	35,144	52,715	70,287	73,811	74,631	74,631	74,631	74,631	74,631	74,631	74,631	74,631	74,631	74,631	74,631	74,631	74,631	74,631	74,631
HVAC (Envelope)	4,512	10,505	16,715	22,722	28,453	33,936	39,392	44,635	49,679	54,632	59,317	63,911	68,328	72,571	76,822	80,759	84,671	88,368	92,162	96,062
HVAC (Equipment)	4,862	10,090	15,372	20,605	25,770	30,873	35,969	41,014	46,011	50,982	55,889	60,771	65,611	70,405	75,202	77,953	80,582	83,142	83,208	82,844
Lighting	14,454	31,187	48,450	65,588	82,419	99,076	115,872	52,714	56,923	61,338	65,854	70,474	74,050	77,377	80,604	83,840	85,459	86,689	87,801	88,951
Water Heating	9,782	19,722	29,686	39,629	49,541	59,427	67,893	76,338	84,762	89,502	89,680	89,704	89,686	89,670	89,684	89,670	89,647	89,614	89,614	89,638
Other	3,489	7,180	10,901	14,594	18,249	21,875	25,495	29,087	32,650	36,200	36,223	36,034	35,792	35,553	35,354	35,198	35,044	34,889	34,775	34,689
Fuel-Switching	4,758	9,695	14,659	19,598	24,503	29,378	34,249	39,095	43,918	48,729	53,507	58,274	63,020	67,745	72,471	77,208	81,943	86,652	91,372	96,105
Early Retirement	7,769	15,539	23,308	25,558	27,807	30,057	32,306	34,556	36,805	39,055	41,304	43,554	45,803	48,053	50,302	52,552	54,801	57,051	59,300	61,549
Total	73,789	152,646	232,446	306,219	365,116	420,668	474,073	447,125	482,990	515,211	539,004	562,133	582,663	602,435	621,349	637,849	652,469	666,307	677,762	689,083
% of Annual Forecast Sales	3.6%	7.3%	11.0%	14.2%	16.7%	19.0%	22.4%	20.6%	22.1%	24.3%	25.0%	25.7%	26.3%	26.8%	27.3%	28.2%	28.0%	28.5%	28.7%	29.1%

							Cumulati	ive Annual	MWh Sav	ings - Max.	Achievabl	e								
End-Use	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033
Appliances	114	228	342	454	567	680	793	905	966	1,026	1,086	1,145	1,160	1,173	1,186	1,201	1,212	1,208	1,204	1,201
Appliances/Water Heating	36	73	109	145	181	217	253	288	324	359	395	420	446	471	470	469	468	466	465	464
Consumer Electronics	896	1,793	2,689	3,585	3,779	3,823	3,823	3,823	3,823	3,823	3,823	3,823	3,823	3,823	3,823	3,823	3,823	3,823	3,823	3,823
HVAC (Envelope)	204	408	607	803	999	1,195	1,390	1,583	1,771	1,956	2,138	2,319	2,497	2,671	2,846	2,989	3,133	3,273	3,417	3,561
HVAC (Equipment)	408	815	1,220	1,625	2,029	2,434	2,838	3,241	3,642	4,042	4,441	4,839	5,236	5,631	6,027	6,201	6,376	6,547	6,551	6,540
Lighting	662	1,334	2,009	2,688	3,369	4,058	4,753	2,255	2,438	2,631	2,833	3,040	3,202	3,360	3,515	3,668	3,747	3,818	3,884	3,948
Water Heating	300	601	899	1,198	1,496	1,795	2,034	2,274	2,511	2,646	2,673	2,701	2,726	2,752	2,778	2,790	2,802	2,816	2,831	2,847
Other	94	189	283	378	472	566	661	755	850	944	944	944	944	944	944	944	944	944	944	944
Fuel-Switching	391	781	1,172	1,563	1,953	2,344	2,734	3,125	3,516	3,905	4,295	4,685	5,074	5,463	5,852	6,241	6,629	7,018	7,407	7,796
Early Retirement	392	783	1,175	1,277	1,379	1,481	1,583	1,685	1,787	1,889	1,991	2,093	2,195	2,297	2,399	2,501	2,603	2,705	2,807	2,908
Total	3,498	7,005	10,505	13,715	16,225	18,593	20,862	19,935	21,627	23,222	24,618	26,009	27,302	28,586	29,839	30,826	31,735	32,618	33,334	34,033
% of Annual Forecast Sales	4.2%	8.1%	12.1%	16.0%	18.5%	21.2%	23.8%	22.9%	24.9%	26.7%	28.2%	29.8%	31.2%	32.5%	33.6%	34.7%	35.6%	36.4%	37.0%	37.7%

						Cum	ulative An	inual MW	Winter Pe	ak Savin	gs - Max. A	chievable	;							
End-Use	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033
Appliances	0.5	1.1	1.6	2.2	2.7	3.2	3.8	4.3	4.4	4.6	4.7	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.8
Apliances/Water Heating	0.4	0.8	1.2	1.6	2.0	2.4	2.8	3.2	3.6	4.0	4.3	4.4	4.5	4.6	4.6	4.6	4.5	4.5	4.4	4.4
Consumer Electronics	2.2	4.5	6.7	8.9	9.3	9.4	9.4	9.4	9.4	9.4	9.4	9.4	9.4	9.4	9.4	9.4	9.4	9.4	9.4	9.4
HVAC (Envelope)	0.6	1.5	2.4	3.3	4.1	4.9	5.7	6.5	7.2	7.9	8.6	9.2	9.8	10.4	11.0	11.5	12.0	12.4	12.9	13.4
HVAC (Equipment)	1.3	2.7	4.2	5.6	7.0	8.4	9.7	11.1	12.4	13.8	15.1	16.4	17.8	19.1	20.3	21.2	22.0	22.7	22.7	22.6
Lighting	5.7	12.0	18.3	24.5	30.4	36.2	41.9	20.0	21.2	22.5	23.8	25.2	26.4	27.5	28.6	29.7	30.1	30.2	30.4	30.6
Water Heating	1.4	2.8	4.3	5.7	7.1	8.5	9.8	11.0	12.2	13.0	13.1	13.0	13.0	13.0	13.0	13.0	12.9	12.9	12.9	12.9
Other	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Fuel-Switching	0.9	1.8	2.8	3.7	4.6	5.6	6.5	7.4	8.3	9.2	10.1	11.0	11.9	12.8	13.7	14.6	15.5	16.4	17.3	18.2
Early Retirement	0.9	1.8	2.7	3.0	3.3	3.5	3.8	4.1	4.4	4.7	5.0	5.2	5.5	5.8	6.1	6.4	6.6	6.9	7.2	7.5
Total	14	29	44	58	71	82	93	77	83	89	94	99	103	107	112	115	118	120	122	124
% of Annual Forecast	32%	6.6%	9.9%	13.3%	15.9%	18.3%	20.6%	16.5%	17.9%	19.2%	19.8%	20.7%	21.6%	22.3%	23.0%	23.6%	241%	24.5%	24 7%	24.8%

Table 3-5: Cumulative Annual Residential Winter Peak Demand (MW) Savings by End Use for VT (Statewide), EVT Territory, and BED Territory

						Cum	ulative An	nual MW	Winter Pe	ak Savin	gs - Max. A	chievable	•							
End-Use	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033
Appliances	0.5	1.0	1.6	2.1	2.6	3.2	3.7	4.2	4.4	4.5	4.6	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7
Apliances/Water Heating	0.4	0.8	1.2	1.6	1.9	2.3	2.7	3.1	3.5	3.8	4.2	4.3	4.4	4.5	4.4	4.4	4.4	4.3	4.3	4.3
Consumer Electronics	2.1	4.2	6.4	8.5	8.8	8.9	8.9	8.9	8.9	8.9	8.9	8.9	8.9	8.9	8.9	8.9	8.9	8.9	8.9	8.9
HVAC (Envelope)	0.6	1.4	2.3	3.2	4.0	4.7	5.5	6.2	6.9	7.6	8.2	8.8	9.4	9.9	10.5	11.0	11.5	11.9	12.3	12.8
HVAC (Equipment)	1.2	2.5	3.8	5.1	6.4	7.7	9.0	10.2	11.5	12.7	13.9	15.1	16.4	17.5	18.7	19.5	20.2	21.0	20.9	20.8
Lighting	5.4	11.5	17.6	23.5	29.2	34.8	40.2	19.2	20.4	21.6	22.9	24.2	25.3	26.3	27.4	28.5	28.8	29.0	29.1	29.3
Water Heating	1.4	2.7	4.1	5.5	6.9	8.3	9.5	10.7	11.9	12.7	12.7	12.7	12.7	12.6	12.6	12.6	12.6	12.6	12.6	12.5
Other	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Fuel-Switching	0.8	1.7	2.6	3.5	4.3	5.2	6.0	6.9	7.7	8.6	9.4	10.3	11.1	11.9	12.8	13.6	14.4	15.3	16.1	16.9
Early Retirement	0.9	1.7	2.6	2.8	3.1	3.4	3.6	3.9	4.2	4.4	4.7	5.0	5.2	5.5	5.8	6.0	6.3	6.6	6.8	7.1
Total	13	28	42	56	67	78	89	73	79	85	90	94	98	102	106	109	112	114	116	117
% of Annual Forecast	3.2%	6.6%	9.9%	13.2%	15.8%	18.2%	20.5%	16.4%	17.8%	19.1%	19.7%	20.5%	21.4%	22.1%	22.8%	23.4%	23.9%	24.2%	24.4%	24.5%

						Cum	ulative An	nual MW	Winter Pe	ak Savin	gs - Max. A	chievable	;							
End-Use	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033
Appliances	0.0	0.0	0.0	0.0	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Apliances/Water Heating	0.0	0.0	0.0	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Consumer Electronics	0.1	0.2	0.3	0.4	0.4	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
HVAC (Envelope)	0.0	0.1	0.1	0.1	0.2	0.2	0.2	0.3	0.3	0.3	0.4	0.4	0.4	0.5	0.5	0.5	0.5	0.6	0.6	0.6
HVAC (Equipment)	0.1	0.2	0.3	0.4	0.5	0.7	0.8	0.9	1.0	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.7	1.8	1.8	1.8
Lighting	0.2	0.5	0.7	1.0	1.2	1.4	1.6	0.8	0.9	0.9	1.0	1.0	1.1	1.1	1.2	1.2	1.3	1.3	1.3	1.3
Water Heating	0.0	0.1	0.1	0.2	0.2	0.2	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.4	0.4	0.4	0.4	0.3	0.3	0.3
Other	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Fuel-Switching	0.1	0.1	0.2	0.3	0.3	0.4	0.4	0.5	0.6	0.6	0.7	0.8	0.8	0.9	1.0	1.0	1.1	1.2	1.2	1.3
Early Retirement	0.0	0.1	0.1	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.4
Total	0.7	1.3	2.0	2.6	3.1	3.7	4.2	3.6	3.9	4.2	4.5	4.8	5.1	5.4	5.6	5.8	6.0	6.1	6.3	6.4
% of Annual Forecast	3.9%	7.6%	11.3%	14.7%	17.6%	20.3%	22.8%	19.0%	20.7%	22.3%	23.6%	24.8%	26.1%	27.4%	28.7%	29.4%	30.2%	30.9%	31.1%	31.4%

						Cumu	lative Anı	nual MW S	Summer P	eak Savin	igs - Max.	Achievabl	e							
End-Use	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033
Appliances	0.7	1.4	2.1	2.8	3.6	4.3	5.0	5.7	5.9	6.1	6.2	6.4	6.5	6.5	6.5	6.5	6.5	6.4	6.4	6.4
Apliances/Water Heating	0.2	0.5	0.7	0.9	1.2	1.4	1.6	1.9	2.1	2.3	2.5	2.6	2.7	2.8	2.8	2.7	2.7	2.7	2.7	2.6
Consumer Electronics	2.2	4.4	6.6	8.8	9.2	9.2	9.2	9.2	9.2	9.2	9.2	9.2	9.2	9.2	9.2	9.2	9.2	9.2	9.2	9.2
HVAC (Envelope)	1.7	3.9	6.1	8.3	10.4	12.4	14.4	16.4	18.3	20.1	21.9	23.7	25.3	27.0	28.6	30.2	31.7	33.1	34.6	36.1
HVAC (Equipment)	1.3	2.7	4.1	5.5	6.9	8.3	9.6	11.0	12.4	13.7	15.0	16.3	17.7	19.0	20.3	20.4	20.4	20.4	20.4	20.3
Lighting	1.4	2.9	4.5	6.0	7.5	8.9	10.3	4.0	4.2	4.4	4.6	4.8	4.9	5.1	5.2	5.3	5.4	5.5	5.6	5.7
Water Heating	0.8	1.6	2.4	3.2	4.0	4.8	5.4	6.1	6.7	7.1	7.1	7.1	7.1	7.1	7.1	7.1	7.1	7.0	7.0	7.0
Other	2.5	5.1	7.7	10.3	12.8	15.4	17.9	20.5	23.0	25.5	25.5	25.4	25.2	25.0	24.9	24.8	24.7	24.6	24.5	24.4
Fuel-Switching	0.6	1.2	1.8	2.4	2.9	3.5	4.1	4.7	5.3	5.9	6.4	7.0	7.6	8.1	8.7	9.3	9.8	10.4	10.9	11.5
Early Retirement	1.0	2.0	3.0	3.2	3.5	3.8	4.1	4.3	4.6	4.9	5.2	5.4	5.7	6.0	6.3	6.5	6.8	7.1	7.4	7.6
Total	12	26	39	51	62	72	82	84	92	99	104	108	112	116	119	122	124	127	129	131
% of Annual Forecast	3.4%	6.9%	10.4%	13.5%	16.0%	18.3%	20.6%	20.8%	22.5%	24.3%	25.1%	25.8%	26.4%	27.0%	27.5%	27.9%	28.0%	28.3%	28.5%	28.7%

Table 3-6: Cumulative Annual Residential Summer Peak Demand (MW) Savings by End Use for VT (Statewide), EVT Territory, and BED Territory

						Cumu	lative Anr	ual MW S	ummer P	eak Savin	igs - Max	Achievabl	e							
End-Use	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033
Appliances	0.7	1.4	2.1	2.8	3.5	4.2	4.9	5.5	5.7	5.9	6.1	6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.2	6.2
Apliances/Water Heating	0.2	0.4	0.7	0.9	1.1	1.4	1.6	1.8	2.0	2.2	2.4	2.5	2.6	2.7	2.7	2.6	2.6	2.6	2.6	2.5
Consumer Electronics	2.1	4.2	6.3	8.4	8.7	8.8	8.8	8.8	8.8	8.8	8.8	8.8	8.8	8.8	8.8	8.8	8.8	8.8	8.8	8.8
HVAC (Envelope)	1.7	3.8	6.0	8.1	10.1	12.1	14.0	15.9	17.7	19.5	21.3	23.0	24.6	26.2	27.8	29.3	30.7	32.1	33.6	35.0
HVAC (Equipment)	1.2	2.5	3.8	5.0	6.3	7.5	8.8	10.0	11.2	12.5	13.7	14.9	16.1	17.2	18.4	18.5	18.6	18.6	18.5	18.5
Lighting	1.3	2.8	4.3	5.8	7.2	8.5	9.8	3.9	4.0	4.2	4.4	4.6	4.7	4.8	5.0	5.1	5.2	5.3	5.3	5.4
Water Heating	0.8	1.6	2.3	3.1	3.9	4.7	5.3	5.9	6.5	6.9	6.9	6.9	6.9	6.9	6.9	6.9	6.9	6.8	6.8	6.8
Other	2.4	4.9	7.5	10.0	12.5	15.0	17.5	19.9	22.4	24.8	24.8	24.7	24.5	24.4	24.2	24.1	24.0	23.9	23.8	23.8
Fuel-Switching	0.5	1.1	1.6	2.2	2.8	3.3	3.9	4.4	4.9	5.5	6.0	6.5	7.1	7.6	8.1	8.7	9.2	9.7	10.2	10.8
Early Retirement	0.9	1.9	2.8	3.1	3.3	3.6	3.8	4.1	4.4	4.6	4.9	5.2	5.4	5.7	5.9	6.2	6.5	6.7	7.0	7.3
Total	12	24	37	49	59	69	78	80	88	95	99	103	107	111	114	116	119	121	123	125
% of Annual Forecast	3.4%	6.9%	10.4%	13.5%	16.0%	18.3%	20.6%	20.8%	22.5%	24.3%	25.1%	25.8%	26.3%	26.9%	27.4%	27.7%	27.8%	28.1%	28.3%	28.5%

						Cumu	lative Anı	ual MW S	ummer P	eak Savin	igs - Max.	Achievabl	e							
End-Use	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033
Appliances	0.0	0.0	0.0	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Apliances/Water Heating	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Consumer Electronics	0.1	0.2	0.3	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
HVAC (Envelope)	0.1	0.1	0.2	0.2	0.3	0.4	0.4	0.5	0.5	0.6	0.6	0.7	0.8	0.8	0.9	0.9	1.0	1.0	1.0	1.1
HVAC (Equipment)	0.1	0.2	0.4	0.5	0.6	0.7	0.9	1.0	1.1	1.2	1.4	1.5	1.6	1.7	1.9	1.9	1.9	1.9	1.9	1.9
Lighting	0.1	0.1	0.2	0.2	0.3	0.4	0.4	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.3	0.3
Water Heating	0.0	0.0	0.1	0.1	0.1	0.1	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Other	0.1	0.1	0.2	0.3	0.3	0.4	0.5	0.5	0.6	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7
Fuel-Switching	0.0	0.1	0.1	0.1	0.2	0.2	0.3	0.3	0.3	0.4	0.4	0.4	0.5	0.5	0.6	0.6	0.6	0.7	0.7	0.7
Early Retirement	0.1	0.1	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.4	0.4	0.4
Total	0.6	1.1	1.7	2.2	2.6	3.0	3.4	3.5	3.8	4.2	4.4	4.7	4.9	5.1	5.4	5.5	5.6	5.7	5.8	5.9
% of Annual Forecast	3.7%	7.4%	10.9%	14.1%	16.7%	18.9%	21.1%	21.3%	23.1%	24.9%	26.3%	27.6%	28.8%	29.9%	31.2%	31.8%	32.3%	32.8%	33.0%	33.3%

							Incremen	ital Annual	MWh Sav	ings - Max	Achievab	le								
End-Use	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033
Appliances	5,644	5,881	5,915	5,882	5,837	5,798	5,793	5,759	5,727	5,711	5,668	5,653	5,625	5,596	5,597	5,614	5,610	5,575	5,591	5,608
Appliances/Water Heating	1,097	1,264	1,290	1,266	1,235	1,207	1,204	1,180	1,157	1,146	1,116	1,106	1,086	1,065	1,066	1,077	1,075	1,050	1,061	1,073
Consumer Electronics	18,468	18,468	18,468	18,468	18,468	18,468	18,468	18,468	18,468	18,468	18,468	18,468	18,468	18,468	18,468	18,468	18,468	18,468	18,468	18,468
HVAC (Envelope)	4,716	6,197	6,409	6,203	5,927	5,678	5,651	5,436	5,233	5,137	4,867	4,775	4,595	4,417	4,426	4,526	4,502	4,283	4,384	4,490
HVAC (Equipment)	5,270	5,636	5,687	5,638	5,569	5,508	5,501	5,448	5,397	5,371	5,305	5,281	5,237	5,189	5,193	5,218	5,211	5,155	5,182	5,208
Lighting	15,116	17,404	17,938	17,816	17,513	17,345	17,491	7,625	7,503	7,438	7,289	7,231	7,131	7,033	7,029	7,070	7,050	6,934	6,978	7,024
Water Heating	10,082	10,240	10,263	10,242	10,210	10,185	10,181	10,159	10,137	10,126	10,099	10,090	10,068	10,050	10,051	10,061	10,059	10,033	10,046	10,057
Other	3,584	3,785	3,815	3,787	3,750	3,720	3,715	3,687	3,657	3,644	3,606	3,596	3,574	3,548	3,551	3,564	3,561	3,531	3,543	3,559
Fuel-Switching	5,148	5,328	5,354	5,330	5,296	5,266	5,262	5,237	5,213	5,201	5,167	5,157	5,135	5,114	5,115	5,126	5,124	5,097	5,109	5,122
Early Retirement	8,161	8,161	8,161	8,161	8,161	8,161	8,161	8,161	8,161	8,161	8,161	8,161	9,412	9,412	10,512	10,512	10,512	10,512	10,512	10,512
Total	77,286	82,365	83,301	82,793	81,966	81,335	81,427	71,159	70,654	70,404	69,748	69,518	70,330	69,893	71,009	71,236	71,173	70,640	70,874	71,122
% of Annual Forecast Sales	3.6%	3.8%	3.8%	3.7%	3.6%	3.5%	3.7%	3.2%	3.1%	3.2%	3.1%	3.1%	3.0%	3.0%	3.0%	3.0%	2.9%	2.9%	2.9%	2.9%

Table 3-7: Incremental Annual Residential Energy (MWh) Savings Potential by End Use for VT (Statewide), EVT Territory, and BED Territory

							Incremen	ital Annual	MWh Sav	ings - Max.	Achievabl	е								
End-Use	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033
Appliances	5,530	5,767	5,801	5,769	5,725	5,685	5,680	5,647	5,615	5,600	5,557	5,542	5,514	5,486	5,488	5,504	5,500	5,466	5,481	5,498
Appliances/Water Heating	1,061	1,228	1,253	1,230	1,199	1,171	1,168	1,144	1,121	1,111	1,081	1,070	1,051	1,030	1,031	1,043	1,040	1,015	1,026	1,038
Consumer Electronics	17,572	17,572	17,572	17,572	17,572	17,572	17,572	17,572	17,572	17,572	17,572	17,572	17,572	17,572	17,572	17,572	17,572	17,572	17,572	17,572
HVAC (Envelope)	4,512	5,993	6,210	6,007	5,731	5,482	5,456	5,243	5,045	4,952	4,686	4,593	4,417	4,243	4,251	4,351	4,327	4,111	4,209	4,315
HVAC (Equipment)	4,862	5,228	5,282	5,233	5,165	5,103	5,096	5,045	4,996	4,972	4,907	4,882	4,840	4,794	4,797	4,822	4,815	4,763	4,786	4,812
Lighting	14,454	16,733	17,263	17,138	16,832	16,656	16,797	7,309	7,191	7,127	6,981	6,924	6,825	6,729	6,725	6,766	6,747	6,632	6,675	6,721
Water Heating	9,782	9,939	9,965	9,943	9,912	9,886	9,882	9,861	9,840	9,830	9,802	9,793	9,773	9,755	9,756	9,766	9,764	9,738	9,751	9,762
Other	3,489	3,691	3,721	3,693	3,656	3,625	3,620	3,593	3,563	3,550	3,512	3,502	3,479	3,454	3,457	3,469	3,466	3,437	3,449	3,464
Fuel-Switching	4,758	4,937	4,964	4,939	4,905	4,875	4,872	4,846	4,822	4,811	4,778	4,767	4,746	4,725	4,726	4,737	4,735	4,708	4,720	4,733
Early Retirement	7,769	7,769	7,769	7,769	7,769	7,769	7,769	7,769	7,769	7,769	7,769	7,769	8,958	8,958	10,019	10,019	10,019	10,019	10,019	10,019
Total	73,789	78,857	79,800	79,293	78,464	77,824	77,912	68,027	67,535	67,294	66,644	66,415	67,174	66,745	67,822	68,049	67,985	67,461	67,687	67,935
% of Annual Forecast Sales	3.6%	3.8%	3.8%	3.7%	3.6%	3.5%	3.7%	3.1%	3.1%	3.2%	3.1%	3.0%	3.0%	3.0%	3.0%	3.0%	2.9%	2.9%	2.9%	2.9%

							Incremen	ntal Annual	MWh Sav	ings - Max	. Achievab	e								
End-Use	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033
Appliances	114	114	113	113	113	113	113	113	112	111	111	111	110	110	110	110	110	110	110	110
Appliances/Water Heating	36	36	36	36	36	36	36	36	36	35	35	35	35	35	35	35	35	35	35	35
Consumer Electronics	896	896	896	896	896	896	896	896	896	896	896	896	896	896	896	896	896	896	896	896
HVAC (Envelope)	204	204	199	196	195	196	195	193	188	185	181	181	178	174	174	174	175	172	175	175
HVAC (Equipment)	408	408	405	405	405	405	405	403	401	400	399	398	397	396	396	396	396	392	396	396
Lighting	662	672	675	679	682	689	695	316	312	310	309	308	306	304	304	304	304	302	303	303
Water Heating	300	300	299	299	299	299	299	299	297	297	297	297	295	295	295	295	295	295	295	295
Other	94	94	94	94	94	94	94	94	94	94	94	94	94	94	94	94	94	94	94	94
Fuel-Switching	391	391	391	391	391	391	391	391	391	390	390	390	389	389	389	389	389	389	389	389
Early Retirement	392	392	392	392	392	392	392	392	392	392	392	392	455	455	494	494	494	494	494	494
Total	3,498	3,507	3,500	3,500	3,502	3,510	3,515	3,132	3,118	3,110	3,104	3,102	3,156	3,148	3,187	3,187	3,188	3,179	3,187	3,187
% of Annual Forecast Sales	4.2%	4.1%	4.0%	4.1%	4.0%	4.0%	4.0%	3.6%	3.6%	3.6%	3.6%	3.6%	3.6%	3.6%	3.6%	3.6%	3.6%	3.5%	3.5%	3.5%

3.4 IMPACT OF BEHAVIORAL MEASURES ON RESIDENTIAL SAVINGS POTENTIAL

A small portion of the maximum achievable potential in the residential sector over the next 20 years is expected to be driven by behavioral programs. In total, approximately 1% of the residential maximum achievable potential (7,022 MWh) is assumed to be a result of the impact behavioral programs will have on driving program participation. There also exists the potential for "soft" behavior-based conservation energy savings from non-hard wired measures, though the quantification of those savings is not provided in this long term 20-year study due to the typically short one-year measure life and for the reasons provided in Section 2.5.2.

3.5 RESIDENTIAL MAXIMUM ACHIEVABLE POTENTIAL BENEFITS & COSTS

The overall benefit/cost screening results for the residential sector maximum achievable potential are shown below in Table 3-8. The net present value costs to Vermont of roughly \$779 million dollars represent both total measure costs as well as the associated costs (i.e. marketing, labor, monitoring, etc.) of administering energy efficiency programs between 2014 and 2033¹⁶. The net present value benefits of \$2.4 billion represent the lifetime benefits of all measures installed during the same time period. In addition to the electric benefits received, the net present value benefit dollars include the impacts of reduced fuel consumption (or increased fuel consumption through fuel-switching efforts), water savings, other O&M benefits, and the VT Societal Test externality benefits. Although the maximum achievable potential estimates would require a substantial investment in energy efficiency over the long term, the resulting energy and demand savings would result in a net savings of nearly \$1.7 billion dollars (present worth 2014).

	Benefits (in Millions)	Cost (in Millions)	B/C Ratio
Statewide			
NVP \$2014	\$2,438.4	\$779.0	3.1
EVT Territory			
NVP \$2014	\$2,344.7	\$744.1	3.2
BED Territory			
NVP \$2014	\$93.7	\$35.0	2.7

 Table 3-8: NPV (\$2014) Benefits and Costs Associated with the Maximum Achievable Potential Electric Savings in the Residential Sector in 2033

The annual incentive and administrative cost associated with the maximum achievable potential savings are presented in greater detail in Tables 3-9 through 3-11. Administrative costs range annually from 30.0%-35.5% of the total estimated annual dollars necessary to achieve the targeted maximum achievable potential. Because administrative costs are tied directly to first year kWh savings, administrative costs are sensitive to the number of measures being installed each year and are not a predetermined fraction of the total budget.

¹⁶ The associated costs, or "non-incentive costs" refer to the Total Efficiency Vermont Costs reported by EVT net of all incentives to participants and/or trade allies. It does not include participant or other third party costs. Performance incentives and operations fees, along with evaluation budgets are additional costs to deliver programs that are not included in this calculation.

							Ince	ntive Co	osts - St	atewide	e									
End-Use	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033
Appliances	\$1.7	\$1.9	\$2.0	\$1.9	\$1.9	\$1.9	\$1.8	\$1.8	\$1.8	\$1.8	\$1.7	\$1.7	\$1.7	\$1.7	\$1.7	\$1.7	\$1.7	\$1.6	\$1.7	\$1.7
Appliances/Water Heating	\$2.6	\$3.2	\$3.2	\$3.2	\$3.1	\$3.0	\$3.0	\$2.9	\$2.8	\$2.8	\$2.7	\$2.7	\$2.6	\$2.5	\$2.6	\$2.6	\$2.6	\$2.5	\$2.5	\$2.6
Consumer Electronics	\$2.3	\$2.3	\$2.3	\$2.3	\$2.3	\$2.3	\$2.3	\$2.3	\$2.3	\$2.3	\$2.3	\$2.3	\$2.3	\$2.3	\$2.3	\$2.3	\$2.3	\$2.3	\$2.3	\$2.3
HVAC (Envelope)	\$10.7	\$15.3	\$15.9	\$15.3	\$14.4	\$13.7	\$13.6	\$12.9	\$12.3	\$12.0	\$11.2	\$10.9	\$10.3	\$9.8	\$9.8	\$10.1	\$10.0	\$9.4	\$9.7	\$10.0
HVAC (Equipment)	\$4.2	\$4.4	\$4.5	\$4.4	\$4.4	\$4.4	\$4.4	\$4.3	\$4.3	\$4.3	\$4.3	\$4.3	\$4.2	\$4.2	\$4.2	\$4.2	\$4.2	\$4.2	\$4.2	\$4.2
Lighting	\$4.7	\$4.9	\$4.8	\$4.4	\$4.2	\$4.1	\$4.0	\$4.2	\$4.0	\$3.8	\$3.6	\$3.4	\$3.2	\$3.0	\$2.9	\$2.8	\$2.7	\$2.6	\$2.5	\$2.5
Water Heating	\$3.0	\$3.1	\$3.1	\$3.1	\$3.1	\$3.1	\$3.1	\$3.1	\$3.0	\$3.0	\$3.0	\$3.0	\$3.0	\$3.0	\$3.0	\$3.0	\$3.0	\$3.0	\$3.0	\$3.0
Other	\$0.8	\$0.8	\$0.8	\$0.8	\$0.8	\$0.8	\$0.8	\$0.8	\$0.8	\$0.8	\$0.8	\$0.8	\$0.7	\$0.7	\$0.7	\$0.7	\$0.7	\$0.7	\$0.7	\$0.7
Fuel-Switching	\$1.2	\$1.3	\$1.3	\$1.3	\$1.3	\$1.2	\$1.2	\$1.2	\$1.2	\$1.2	\$1.2	\$1.2	\$1.2	\$1.2	\$1.2	\$1.2	\$1.2	\$1.2	\$1.2	\$1.2
Early Retirement	\$13.7	\$13.7	\$13.7	\$13.7	\$13.7	\$13.7	\$13.7	\$13.7	\$13.7	\$13.7	\$13.7	\$13.7	\$14.9	\$14.9	\$17.2	\$17.2	\$17.2	\$17.2	\$17.2	\$17.2
Behavioral/Education	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0
Total	\$44.9	\$50.8	\$51.5	\$50.4	\$49.1	\$48.0	\$47.8	\$47.2	\$46.2	\$45.7	\$44.4	\$43.9	\$44.3	\$43.4	\$45.6	\$45.9	\$45.7	\$44.8	\$45.1	\$45.4
							Non-In	centive	Costs -	Statew	ide									
End-Use	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033
Appliances	\$0.6	\$0.9	\$1.0	\$0.9	\$0.9	\$0.8	\$0.9	\$0.8	\$0.8	\$0.8	\$0.7	\$0.7	\$0.7	\$0.6	\$0.7	\$0.7	\$0.7	\$0.7	\$0.7	\$0.7
Appliances/Water Heating	\$0.2	\$0.5	\$0.5	\$0.5	\$0.5	\$0.4	\$0.4	\$0.4	\$0.4	\$0.4	\$0.3	\$0.3	\$0.3	\$0.3	\$0.3	\$0.3	\$0.3	\$0.3	\$0.3	\$0.3
Consumer Electronics	\$0.9	\$0.9	\$1.0	\$1.0	\$1.0	\$1.0	\$1.0	\$1.1	\$1.1	\$1.1	\$1.1	\$1.1	\$1.2	\$1.2	\$1.2	\$1.2	\$1.3	\$1.3	\$1.3	\$1.3
HVAC (Envelope)	\$4.1	\$6.2	\$6.6	\$6.5	\$6.2	\$6.0	\$6.0	\$5.8	\$5.6	\$5.6	\$5.2	\$5.2	\$5.0	\$4.8	\$4.9	\$5.2	\$5.2	\$4.9	\$5.2	\$5.5
HVAC (Equipment)	\$3.5	\$4.0	\$4.2	\$4.2	\$4.2	\$4.2	\$4.2	\$4.2	\$4.2	\$4.3	\$4.3	\$4.3	\$4.3	\$4.3	\$4.4	\$4.6	\$4.6	\$4.6	\$4.8	\$4.9
Lighting	\$2.1	\$3.8	\$4.0	\$3.7	\$3.4	\$3.1	\$3.0	\$2.1	\$2.0	\$1.9	\$1.7	\$1.7	\$1.5	\$1.4	\$1.4	\$1.6	\$1.6	\$1.4	\$1.5	\$1.6
Water Heating	\$0.7	\$0.9	\$1.0	\$1.0	\$0.9	\$0.9	\$0.9	\$0.9	\$0.9	\$0.9	\$0.9	\$0.9	\$0.9	\$0.8	\$0.9	\$0.9	\$0.9	\$0.9	\$0.9	\$1.0
Other	\$0.4	\$0.7	\$0.7	\$0.7	\$0.7	\$0.6	\$0.7	\$0.6	\$0.6	\$0.6	\$0.5	\$0.5	\$0.5	\$0.5	\$0.5	\$0.5	\$0.5	\$0.5	\$0.5	\$0.5
Fuel-Switching	\$3.6	\$3.9	\$4.0	\$4.1	\$4.1	\$4.1	\$4.2	\$4.2	\$4.3	\$4.4	\$4.4	\$4.5	\$4.5	\$4.6	\$4.7	\$4.8	\$4.9	\$4.9	\$5.0	\$5.2
Early Retirement	\$0.4	\$0.4	\$0.4	\$0.4	\$0.4	\$0.5	\$0.5	\$0.5	\$0.5	\$0.5	\$0.5	\$0.5	\$0.6	\$0.6	\$0.7	\$0.7	\$0.7	\$0.7	\$0.8	\$0.8
Behavioral/Education	\$2.8	\$2.9	\$2.9	\$2.9	\$2.9	\$3.0	\$3.0	\$3.0	\$3.0	\$3.0	\$3.1	\$3.1	\$3.1	\$3.1	\$3.1	\$3.1	\$3.1	\$3.1	\$3.1	\$3.1
Total	\$19.2	\$25.2	\$26.3	\$25.9	\$25.2	\$24.6	\$24.8	\$23.7	\$23.3	\$23.4	\$22.7	\$22.8	\$22.5	\$22.1	\$22.6	\$23.5	\$23.8	\$23.2	\$24.1	\$25.0

Table 3-9 Incentive and Administrative Costs Associated with the Residential Maximum Achievable Potential (VT Statewide), (\$ in millions)

						Ince	entive C	osts - E	VT Ter	ritory										
End-Use	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033
Appliances	\$1.7	\$1.9	\$1.9	\$1.9	\$1.8	\$1.8	\$1.8	\$1.8	\$1.7	\$1.7	\$1.7	\$1.7	\$1.6	\$1.6	\$1.6	\$1.6	\$1.6	\$1.6	\$1.6	\$1.6
Appliances/Water Heating	\$2.5	\$3.1	\$3.1	\$3.1	\$3.0	\$2.9	\$2.9	\$2.8	\$2.7	\$2.7	\$2.6	\$2.6	\$2.5	\$2.4	\$2.5	\$2.5	\$2.5	\$2.4	\$2.4	\$2.5
Consumer Electronics	\$2.2	\$2.2	\$2.2	\$2.2	\$2.2	\$2.2	\$2.2	\$2.2	\$2.2	\$2.2	\$2.2	\$2.2	\$2.2	\$2.2	\$2.2	\$2.2	\$2.2	\$2.2	\$2.2	\$2.2
HVAC (Envelope)	\$10.3	\$14.8	\$15.5	\$14.9	\$14.0	\$13.3	\$13.2	\$12.5	\$11.9	\$11.6	\$10.8	\$10.5	\$10.0	\$9.5	\$9.5	\$9.8	\$9.7	\$9.0	\$9.3	\$9.7
HVAC (Equipment)	\$3.9	\$4.1	\$4.1	\$4.1	\$4.1	\$4.1	\$4.0	\$4.0	\$4.0	\$4.0	\$3.9	\$3.9	\$3.9	\$3.9	\$3.9	\$3.9	\$3.9	\$3.9	\$3.9	\$3.9
Lighting	\$4.5	\$4.7	\$4.6	\$4.2	\$4.0	\$3.9	\$3.8	\$4.0	\$3.8	\$3.6	\$3.4	\$3.2	\$3.1	\$2.9	\$2.8	\$2.7	\$2.6	\$2.5	\$2.4	\$2.4
Water Heating	\$2.9	\$3.0	\$3.0	\$3.0	\$3.0	\$2.9	\$2.9	\$2.9	\$2.9	\$2.9	\$2.9	\$2.9	\$2.9	\$2.9	\$2.9	\$2.9	\$2.9	\$2.9	\$2.9	\$2.9
Other	\$0.7	\$0.8	\$0.8	\$0.8	\$0.8	\$0.8	\$0.8	\$0.8	\$0.7	\$0.7	\$0.7	\$0.7	\$0.7	\$0.7	\$0.7	\$0.7	\$0.7	\$0.7	\$0.7	\$0.7
Fuel-Switching	\$1.1	\$1.2	\$1.2	\$1.2	\$1.2	\$1.2	\$1.2	\$1.2	\$1.2	\$1.1	\$1.1	\$1.1	\$1.1	\$1.1	\$1.1	\$1.1	\$1.1	\$1.1	\$1.1	\$1.1
Early Retirement	\$13.0	\$13.0	\$13.0	\$13.0	\$13.0	\$13.0	\$13.0	\$13.0	\$13.0	\$13.0	\$13.0	\$13.0	\$14.2	\$14.2	\$16.4	\$16.4	\$16.4	\$16.4	\$16.4	\$16.4
Behavioral/Education	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0
Total	\$42.8	\$48.7	\$49.5	\$48.3	\$47.0	\$46.0	\$45.8	\$45.2	\$44.2	\$43.7	\$42.4	\$41.9	\$42.3	\$41.4	\$43.6	\$43.9	\$43.7	\$42.7	\$43.0	\$43.4
	·					Non-I	ncentive	e Costs	- EVT T	erritor	у									
End-Use	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033
Appliances	\$0.5	\$0.9	\$0.9	\$0.9	\$0.9	\$0.8	\$0.8	\$0.8	\$0.8	\$0.8	\$0.7	\$0.7	\$0.7	\$0.6	\$0.6	\$0.7	\$0.7	\$0.6	\$0.7	\$0.7
Appliances/Water Heating	\$0.2	\$0.5	\$0.5	\$0.5	\$0.5	\$0.4	\$0.4	\$0.4	\$0.4	\$0.4	\$0.3	\$0.3	\$0.3	\$0.3	\$0.3	\$0.3	\$0.3	\$0.3	\$0.3	\$0.3
Consumer Electronics	\$0.9	\$0.9	\$0.9	\$0.9	\$1.0	\$1.0	\$1.0	\$1.0	\$1.0	\$1.0	\$1.1	\$1.1	\$1.1	\$1.1	\$1.2	\$1.2	\$1.2	\$1.2	\$1.3	\$1.3
HVAC (Envelope)	\$3.9	\$6.0	\$6.5	\$6.3	\$6.0	\$5.8	\$5.9	\$5.6	\$5.4	\$5.4	\$5.1	\$5.0	\$4.8	\$4.6	\$4.7	\$5.0	\$5.0	\$4.7	\$5.0	\$5.3
HVAC (Equipment)	\$3.2	\$3.7	\$3.9	\$3.9	\$3.9	\$3.9	\$3.9	\$3.9	\$3.9	\$4.0	\$3.9	\$4.0	\$4.0	\$4.0	\$4.1	\$4.2	\$4.3	\$4.3	\$4.4	\$4.5
Lighting	\$2.0	\$3.7	\$3.9	\$3.7	\$3.3	\$3.0	\$2.9	\$2.0	\$1.9	\$1.8	\$1.6	\$1.6	\$1.5	\$1.3	\$1.4	\$1.5	\$1.5	\$1.3	\$1.4	\$1.6
Water Heating	\$0.7	\$0.9	\$1.0	\$0.9	\$0.9	\$0.9	\$0.9	\$0.9	\$0.9	\$0.9	\$0.8	\$0.8	\$0.8	\$0.8	\$0.8	\$0.9	\$0.9	\$0.8	\$0.9	\$0.9
Other	\$0.4	\$0.7	\$0.7	\$0.7	\$0.7	\$0.6	\$0.6	\$0.6	\$0.6	\$0.6	\$0.5	\$0.5	\$0.5	\$0.4	\$0.5	\$0.5	\$0.5	\$0.5	\$0.5	\$0.5
Fuel-Switching	\$3.3	\$3.6	\$3.7	\$3.8	\$3.8	\$3.8	\$3.9	\$3.9	\$4.0	\$4.0	\$4.1	\$4.1	\$4.2	\$4.2	\$4.3	\$4.4	\$4.5	\$4.5	\$4.7	\$4.8
Early Retirement	\$0.4	\$0.4	\$0.4	\$0.4	\$0.4	\$0.4	\$0.4	\$0.4	\$0.5	\$0.5	\$0.5	\$0.5	\$0.6	\$0.6	\$0.7	\$0.7	\$0.7	\$0.7	\$0.7	\$0.7
Behavioral/Education	\$2.7	\$2.7	\$2.7	\$2.8	\$2.8	\$2.8	\$2.8	\$2.8	\$2.9	\$2.9	\$2.9	\$2.9	\$2.9	\$2.9	\$2.9	\$3.0	\$3.0	\$3.0	\$3.0	\$3.0
Total	\$18.2	\$24.1	\$25.3	\$24.8	\$24.1	\$23.5	\$23.7	\$22.5	\$22.2	\$22.2	\$21.5	\$21.6	\$21.3	\$20.9	\$21.4	\$22.2	\$22.5	\$21.9	\$22.8	\$23.7

Table 3-10: Incentive and Administrative Costs Associated with the Residential Maximum Achievable Potential (EVT), (\$ in millions)

					-	In	centive	Costs -	BED T	erritory	/				-					
End-Use	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033
Appliances	\$0.06	\$0.06	\$0.06	\$0.06	\$0.06	\$0.06	\$0.06	\$0.06	\$0.06	\$0.06	\$0.05	\$0.05	\$0.05	\$0.05	\$0.05	\$0.05	\$0.05	\$0.05	\$0.05	\$0.05
Appliances/Water Heating	\$0.10	\$0.10	\$0.10	\$0.10	\$0.10	\$0.10	\$0.10	\$0.10	\$0.10	\$0.10	\$0.10	\$0.10	\$0.10	\$0.10	\$0.10	\$0.10	\$0.10	\$0.10	\$0.10	\$0.10
Consumer Electronics	\$0.11	\$0.11	\$0.11	\$0.11	\$0.11	\$0.11	\$0.11	\$0.11	\$0.11	\$0.11	\$0.11	\$0.11	\$0.11	\$0.11	\$0.11	\$0.11	\$0.11	\$0.11	\$0.11	\$0.11
HVAC (Envelope)	\$0.42	\$0.42	\$0.40	\$0.39	\$0.39	\$0.39	\$0.39	\$0.38	\$0.37	\$0.36	\$0.35	\$0.35	\$0.34	\$0.33	\$0.33	\$0.33	\$0.33	\$0.32	\$0.33	\$0.33
HVAC (Equipment)	\$0.33	\$0.33	\$0.33	\$0.33	\$0.33	\$0.33	\$0.33	\$0.32	\$0.32	\$0.32	\$0.32	\$0.32	\$0.32	\$0.32	\$0.32	\$0.32	\$0.32	\$0.32	\$0.32	\$0.32
Lighting	\$0.20	\$0.19	\$0.18	\$0.17	\$0.16	\$0.16	\$0.16	\$0.17	\$0.16	\$0.15	\$0.15	\$0.14	\$0.14	\$0.13	\$0.13	\$0.12	\$0.12	\$0.11	\$0.11	\$0.11
Water Heating	\$0.12	\$0.12	\$0.11	\$0.11	\$0.11	\$0.11	\$0.11	\$0.11	\$0.11	\$0.11	\$0.11	\$0.11	\$0.11	\$0.11	\$0.11	\$0.11	\$0.11	\$0.11	\$0.11	\$0.11
Other	\$0.02	\$0.02	\$0.02	\$0.02	\$0.02	\$0.02	\$0.02	\$0.02	\$0.02	\$0.02	\$0.02	\$0.02	\$0.02	\$0.02	\$0.02	\$0.02	\$0.02	\$0.02	\$0.02	\$0.02
Fuel-Switching	\$0.08	\$0.08	\$0.08	\$0.08	\$0.08	\$0.08	\$0.08	\$0.08	\$0.08	\$0.08	\$0.08	\$0.08	\$0.08	\$0.08	\$0.08	\$0.08	\$0.08	\$0.08	\$0.08	\$0.08
Early Retirement	\$0.66	\$0.66	\$0.66	\$0.66	\$0.66	\$0.66	\$0.66	\$0.66	\$0.66	\$0.66	\$0.66	\$0.66	\$0.72	\$0.72	\$0.83	\$0.83	\$0.83	\$0.83	\$0.83	\$0.83
Behavioral/Education	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
Total	\$2.09	\$2.08	\$2.06	\$2.03	\$2.02	\$2.03	\$2.02	\$2.02	\$2.00	\$1.98	\$1.96	\$1.95	\$2.00	\$1.98	\$2.08	\$2.07	\$2.07	\$2.05	\$2.06	\$2.06
			1		1	Non	-Incenti	ve Cost	s - BED	Territo	ory						-	-		-
End-Use	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033
Appliances	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0
Appliances/Water Heating	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0
Consumer Electronics	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1
HVAC (Envelope)	\$0.2	\$0.2	\$0.2	\$0.2	\$0.2	\$0.2	\$0.2	\$0.2	\$0.2	\$0.2	\$0.2	\$0.2	\$0.2	\$0.2	\$0.2	\$0.2	\$0.2	\$0.2	\$0.2	\$0.2
HVAC (Equipment)	\$0.3	\$0.3	\$0.3	\$0.3	\$0.3	\$0.3	\$0.3	\$0.3	\$0.3	\$0.3	\$0.3	\$0.3	\$0.3	\$0.3	\$0.3	\$0.4	\$0.4	\$0.4	\$0.4	\$0.4
Lighting	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1
Water Heating	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0
Other	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0
Fuel-Switching	\$0.3	\$0.3	\$0.3	\$0.3	\$0.3	\$0.3	\$0.3	\$0.3	\$0.3	\$0.3	\$0.3	\$0.3	\$0.3	\$0.3	\$0.3	\$0.4	\$0.4	\$0.4	\$0.4	\$0.4
Early Retirement	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0
Behavioral/Education	\$0.1	\$0.1	\$0.2	\$0.2	\$0.2	\$0.2	\$0.2	\$0.2	\$0.2	\$0.2	\$0.2	\$0.2	\$0.2	\$0.2	\$0.2	\$0.2	\$0.2	\$0.2	\$0.2	\$0.2
Total	\$1.1	\$1.1	\$1.1	\$1.1	\$1.1	\$1.1	\$1.1	\$1.2	\$1.2	\$1.2	\$1.2	\$1.2	\$1.2	\$1.2	\$1.2	\$1.2	\$1.3	\$1.3	\$1.3	\$1.3

Table 3-11: Incentive and Administrative Costs Associated with the Residential Maximum Achievable Potential (BED), (\$ in millions)

4 COMMERCIAL AND INDUSTRIAL ENERGY EFFICIENCY POTENTIAL ESTIMATES (2014 TO 2033)

This section of the report presents the estimates of electric technical, economic, and maximum achievable potential for the state of Vermont as well as the EVT and BED territories separately.

Figure 4-1 and Table 4-1 below summarize the technical, economic, and maximum achievable savings potential (as a % of forecast sales) for the Vermont service area by 2033. The maximum achievable potential presented here is for a market penetration scenario which assumes the installation of efficient measures in 90% of the available commercial and industrial (C&I) market. If 90% market penetration for all cost-effective measures can be reached over the next 20 years, the maximum achievable potential for electric energy efficiency savings in the commercial and industrial sector is 726,884 MWh (approximately 19% of projected commercial and industrial sales in 2033). Energy efficiency measures and programs can also serve to lessen summer and winter peak demand.

Figure 4-1: 2033 Summaries of Commercial & Industrial Energy Efficiency Potential

Table 4-1 also presents the separate technical, economic, and maximum achievable estimates for the EVT and BED service territories. In general the BED territory had slightly higher percentage estimates of technical, economic, and achievable potential energy savings. Of the combined 726,884 MWh of achievable potential energy savings, the BED territory achievable electric energy savings was 64,151 MWh (19.1% of 2033 BED sales). The EVT territory was estimated to have a maximum achievable potential of 662,733 MWh (18.6% of 2033 EVT territory sales).

	En	ergy		Demano	đ	
	MWh	% of 2033 MWh Sales	Winter MW	% of 2033 Winter Peak	Summer MW	% of 2033 Summer Peak
State-wide						
Technical Potential	865,171	22.2%	82	13.5%	114	13.7%
Economic Potential	798,774	20.5%	80	13.2%	111	13.4%
Maximum Achievable Potential	726,884	18.6%	73	12.0%	101	12.2%
EVT						
Technical Potential	788,596	22.1%	75	13.4%	104	13.7%
Economic Potential	728,278	20.4%	73	13.1%	102	13.3%
Maximum Achievable Potential	662,733	18.6%	67	11.9%	92	12.1%
BED						
Technical Potential	76,575	22.8%	7	15.3%	10	14.8%
Economic Potential	70,495	21.0%	7	14.9%	9	14.5%
Maximum Achievable Potential	64,151	19.1%	6	13.6%	9	13.2%

Table 4-1: 2033 Summary of C&I Energy and Demand Savings Potential

4.1 ENERGY EFFICIENCY MEASURES EXAMINED

Close to one hundred fifty (150) commercial and industrial electric energy efficiency measures were included in the original energy savings analysis for the C&I sector. Below, Table 4-2 provides a brief listing of the various commercial and industrial energy efficiency programs or measures considered in this analysis. The list of energy efficiency measures examined were reviewed based mainly on what was found in the Vermont TRM version 2013-83 and what is found in other studies and field experience.

End Use Type	Measures/Programs Includes
Space Heating	* Heat Pumps (Ground Source, Water Source, High Efficiency)
	* HVAC Tune-Up / Optimization
	* Insulation (Wall, Ceiling, etc.)
	* Commissioning/Retro commissioning/Feedback
Space Cooling	* Heat Pumps (Ground Source, Water Source, High Efficiency)
	* HVAC Tune-up/Optimization/Automated Diagnostics
	* Economizers
	* High-efficiency AC and Chillers
	* Absorption Cooling
Ventilation	* Ventilation Variable Frequency Drives (VFDs)
	* Stove Hood
	* Energy Recovery System
	* Diagnostic Controls / Feedback
Water Heating	* Heat Pump Water Heater
	* Fuel Switching - DHW
	* Low Flow Showerhead/Faucet Aerator
	* High Efficiency Clothes Washers
	* High Efficiency Tank and Booster Water Heaters
	* Solar Assisted Water Heating System
	* Reverse Cycle Chiller / Heat Recovery Unit
Lighting	* LED Lighting Systems (Indoor and Outdoor)
	* Lighting Controls
	* LED Exit Signs
	* Refrigerated Case Lighting
	* Commercial Direct Install CFL

Table 4-2: Measures and Programs Included in the Commercial/Industrial Sector Analysis

End Use Type	Measures/Programs Includes
	* Lighting Design / Improvements
Cooking	* High Efficiency Cooking Equipment
Refrigeration	* Vending Machines
	* Reach-In Freezers
	* Covers for Display Cases / Zero Energy Doors
	* Evaporator Fan Controls
	* Economizer / ECM
	* Commissioning/Retro commissioning/Feedback
Office Equipment/Computers	*Smart Power Strips
	* Power Supplies
	* LCD Monitors
	* Energy Star Computers
	* Network PC Power Management
Process	* Industrial Process
	* Water/Wastewater Treatment Options
Other	* Efficient Televisions (Plasma, LCD)
	* Energy Star Dehumidifiers
	* Air Compressors
	* Fuel Switch – Clothes Dryer
	* Engine Block Timer / Maple Sap Vacuum Pump

4.2 COMMERCIAL AND INDUSTRIAL SECTOR SAVINGS METHODOLOGY OVERVIEW

In all areas of the country, the residential sector has benefited from significantly more studies done on energy conservation related issues than any other sector. Hard data for many of the inputs needed for this analysis in the commercial and industrial sectors in Vermont was unavailable. In general, the preference for data sources in this study followed the order of: data provided by the PSD, EVT, and BED, TRM data, other Vermont-specific data, region specific data, national data, and engineering estimates. In the absence of better data, estimates had to be made based on the engineers' and analysts' judgment derived from experience elsewhere and an understanding of the types of factors that may influence the saturation of a specific measure one way or the other in Vermont.

In contrast to the residential sector analysis, the commercial and industrial sector analysis was modeled using what is called a "top-down" approach. As shown in Figure 4-2, the top-down potential estimate begins with a disaggregated energy sales forecast over the 2014-2033 time period, and then estimates what percentage of these sales a given efficiency measure will save.

Figure 4-2: Commercial/Industrial Sector Methodology – Top-Down Approach

The end-uses were then broken down into measure categories. After measures were examined and saturation data was gathered, the technical, economic and achievable cases were calculated using the equation below:

Equation 4-1: Core Equation for Non-Residential Sector Technical Potential

In instances where there were two (or more) competing technologies for the same electric end use, such as storage water heater tank wraps, heat pump water heaters and solar water heaters, a percent of the available population was assigned to each measure using the applicability factor. In the event that one of the competing measures was not found to be cost-effective, the homes assigned to that measure were transitioned over to the cost effective alternative (if any).

4.3 NON-RESIDENTIAL MAXIMUM ACHIEVABLE SAVINGS POTENTIAL

By 2033 the total non-residential energy efficiency maximum achievable potential is 726,884 MWh, or 18.6% of forecast non-residential sales in 2033. The maximum achievable potential scenario also achieves 73 MW of non-residential winter peak savings, or 12.0% of the 2033 non-residential winter peak forecast. Summer peak savings are estimated at 101 MW, or 12.2% of the non-residential summer peak forecast.

Ac	hievable Potential		
	Energy (MWh)	Winter Peak Demand (MW)	Summer Peak Demand (MW)
Space Heating	16,270	1.0	0.6
Space Cooling	58,747	0.0	11.7
Ventilation	36,326	3.7	9.3
Water Heating	5,988	0.4	0.4
Lighting	358,387	28.7	43.9
Cooking	671	0.1	0.1
Refrigeration	65,559	4.3	4.3
Office Equipment	7,283	0.1	0.1
Computers	26,105	0.5	0.7
Process	136,768	29.2	29.2
Other	14,779	4.9	0.7
TOTAL	726,884	73	101
% of 2033 Commercial/Industrial Sales	18.6%	12.0%	12.2%

Table 4-3: Maximum Achievable Energy and Demand Potential and % Share of Non-Residential Forecast Energy Sales and Summer/Winter Peak Demand in 2033

For the maximum achievable scenario the achievable potential savings are 726,884 MWh or 18.6% of projected 2033 kWh sales. The base case scenario also achieves 101 MW summer peak demand savings, or 12.2% of the 2033 small and large commercial and industrial summer peak demand forecast. Figure 4-3 provides a breakdown of the electric end-use savings as a percent of the total maximum achievable energy savings potential. About 49% of the achievable cost effective savings is from high efficiency lighting, followed by processes and refrigeration. Lighting is usually the dominant end-use for achievable savings because every commercial and industrial customer has lighting, whereas only a small portion have upgraded to energy efficient systems.

Figure 4-3: Sector End-use Savings as a % of Total Achievable Potential – 2033

Tables 4-4 through Table 4-6 depict the cumulative annual energy and demand savings for the commercial/industrial sector. Table 4-7 provides the incremental annual energy savings for the non-residential sector. In addition to the statewide maximum achievable potential, the maximum achievable potential for the EVT and BED service territories are also included. It is important to note that measure participation in this study includes re-entry at the end of a measure's lifetime. This accounts for the continued participation of the customers who have an interest in energy efficient measures with utility program support. In this study, the participation for the non-residential sector was "front-loaded" to match the early years of the achievable potential to the level of participation experienced in recent years in the state. This early adoption causes a ripple effect of a high level of measure participation during the last few years due to the number of C&I new construction and retrofit measures that have a measure lifetime of less than twenty years and C&I early replacement measures that have a measure lifetime of less than fifteen years.

		1 401		annanan			(<i>)</i> 0 <i>u</i> 1 <i>m</i> ₂	50 1 0001	101	11 (00	ace in fac	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1 01110	iy, and		cintory			
			-	-	-	-			Energy Sa	vings (M	Nh)						-			
End-Use	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033
EVT Territory	81,066	166,096	254,631	334,781	403,737	463,565	515,459	560,266	598,763	616,213	621,194	626,176	631,127	635,966	640,654	645,122	649,589	654,057	658,394	662,733
BED Territory	7,824	16,030	24,573	32,310	38,969	44,749	49,765	54,098	57,823	59,520	60,016	60,512	61,005	61,486	61,953	62,398	62,843	63,287	63,719	64,151
Total	88,890	182,126	279,204	367,091	442,706	508,315	565,225	614,364	656,586	675,733	681,210	686,687	692,132	697,452	702,608	707,520	712,432	717,344	722,113	726,884
% of Annual Forecast Sales	2.9%	5.9%	8.8%	11.4%	13.6%	15.3%	16.8%	17.9%	19.0%	19.3%	19.3%	19.2%	19.1%	19.0%	18.9%	18.8%	18.8%	18.7%	18.7%	18.6%

Table 4-4: Cumulative Annual C&I (MWh) Savings Potential for VT (Statewide), EVT Territory, and BED Territory

Table 4-5: Cumulative Annual C&I Winter Peak Demand (MW) Savings Potential for VT (Statewide), EVT Territory, and BED Territory

						-	Winte	r Peak I	Demand	Saving	s (MW)					-				-
End-Use	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033
EVT Territory	8.5	17.4	26.6	35.0	42.2	48.4	53.9	58.3	62.1	63.7	64.1	64.4	64.7	65.0	65.3	65.6	65.9	66.1	66.4	66.7
BED Territory	0.8	1.6	2.4	3.2	3.9	4.4	4.9	5.3	5.7	5.8	5.9	5.9	5.9	6.0	6.0	6.0	6.0	6.1	6.1	6.1
Total	9.3	19.0	29.0	38.2	46.0	52.9	58.8	63.6	67.8	69.6	69.9	70.3	70.6	71.0	71.3	71.6	71.9	72.2	72.5	72.8
% of Annual Forecast	1.8%	3.6%	5.4%	7.2%	8.5%	9.7%	10.7%	11.2%	12.0%	12.3%	12.1%	12.1%	12.2%	12.2%	12.1%	12.1%	12.1%	12.1%	12.1%	12.0%

Table 4-6: Cumulative Annual C&I Summer Peak Demand (MW) Savings Potential for VT (Statewide), EVT Territory, and BED Territory

		-	-	-	-	-	Summe	er Peak	Deman	d Saving	gs (MW)	•	-	-	•	-			
End-Use	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033
EVT Territory	11.4	23.3	35.6	46.8	56.5	64.9	72.3	78.4	83.7	86.1	86.8	87.5	88.1	88.8	89.4	90.1	90.7	91.3	91.9	92.4
BED Territory	1.0	2.1	3.3	4.3	5.2	6.0	6.7	7.2	7.7	7.9	8.0	8.1	8.1	8.2	8.3	8.3	8.4	8.5	8.5	8.6
Total	12.4	25.4	38.9	51.2	61.7	70.9	79.0	85.7	91.4	94.0	94.8	95.5	96.3	97.0	97.7	98.4	99.1	99.8	100.4	101.0
% of Annual Forecast	1.9%	3.8%	5.7%	7.4%	8.8%	10.0%	11.0%	11.8%	12.4%	12.7%	12.7%	12.6%	12.6%	12.5%	12.4%	12.4%	12.3%	12.3%	12.3%	12.2%

Table 4-7: Incremental Annual C&I (MWh) Savings Potential for VT (Statewide), EVT Territory, and BED Territory

	-	-	-		-	-	-	E	nergy Sav	vings (MV	Wh)	-	•		-	-	-	-		
End-Use	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033
EVT Territory	81,066	85,030	88,535	80,758	73,173	66,440	60,370	53,653	51,354	31,185	31,170	33,989	41,769	41,859	54,681	83,528	86,053	82,024	76,305	64,704
BED Territory	7,824	8,206	8,544	7,797	7,081	6,442	5,864	5,217	5,010	3,071	3,089	3,412	4,233	4,203	5,190	8,049	8,285	7,914	7,386	6,267
Total	88,890	93,235	97,079	88,555	80,254	72,881	66,234	58,870	56,364	34,255	34,260	37,401	46,002	46,063	59,871	91,577	94,338	89,939	83,691	70,971
% of Annual Forecast Sales	2.9%	3.0%	3.1%	2.8%	2.5%	2.2%	2.0%	1.7%	1.6%	1.0%	1.0%	1.0%	1.3%	1.3%	1.6%	2.4%	2.5%	2.3%	2.2%	1.8%

4.4 IMPACT OF OMYA ON NON-RESIDENTIAL SAVINGS POTENTIAL

A significant portion of the maximum achievable potential in the non-residential sector over the next 20 years is expected to be energy efficiency measures installed by the industrial customer, OMYA. In total, approximately 3.6% of the non-residential maximum achievable potential (26,241 MWh) is assumed to be a result of the energy efficiency measures installed by this single customer. Within the industrial sector, OMYA represents 16% of the industrial sector maximum achievable potential (164,341 MWh).

The lifetime benefits associated with these industrial measures is \$78.3 million, and the lifetime costs associated with these industrial measures is \$6.1 million. The associated budget for the OMYA industrial measures is \$695,550 in 2014 and \$392,391 in 2033.

4.5 NON-RESIDENTIAL MAXIMUM ACHIEVABLE POTENTIAL BENEFITS & COSTS

The overall benefit/cost screening results for the commercial and industrial sector maximum achievable potential are shown below in Table 4-8. The net present value costs of roughly \$410 million dollars represent total measure costs as well as the associated costs (i.e. marketing, labor, monitoring, etc.) of administering energy efficiency programs and participant costs between 2014 and 2033. The net present value benefits of more than \$1,800 million represent the lifetime benefits of all measures installed during the same time period. In addition to the electric benefits received, the net present value benefit. Although the maximum achievable potential estimates would require a substantial investment in energy efficiency over the long term, the resulting energy and demand savings would result in a net savings of nearly \$1.4 billion dollars (present worth 2014).

Benefits (in Millions)	Cost (in Millions)	B/C Ratio
\$1,802.2	\$409.9	4.4
\$1,656.8	\$372.1	4.5
\$145.4	\$37.8	3.8
	Benefits (in Millions) \$1,802.2 \$1,656.8 \$145.4	Benefits (in Millions) Cost (in Millions) \$1,802.2 \$409.9 \$1,656.8 \$372.1 \$145.4 \$37.8

 Table 4-8: Overall Commercial and Industrial Sector Cost Effectiveness Screening Results (\$ in millions)

The annual incentive and administrative cost associated with the maximum achievable potential savings are presented in greater detail in Table 4-9. Administrative costs range annually from 19% - 27% of the total estimated annual dollars necessary to achieve the targeted maximum achievable potential. Because administrative costs are tied directly to first year kWh savings, administrative costs are sensitive to the number of measures being installed each year and are not a predetermined fraction of the total budget.

Incentive Costs - VT Statewide																				
End-Use	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033
EVT Territory	33.4	35.1	36.5	33.1	29.0	25.8	22.7	20.1	18.2	9.8	10.8	12.4	14.7	14.3	14.5	29.9	30.2	29.9	27.7	23.3
BED Territory	3.4	3.6	3.8	3.4	3.0	2.7	2.3	2.1	1.9	1.0	1.1	1.3	1.6	1.6	1.6	3.1	3.1	3.0	2.8	2.4
VT Statewide	36.9	38.7	40.3	36.5	32.0	28.5	25.1	22.2	20.0	10.8	11.9	13.7	16.3	15.9	16.0	33.0	33.3	32.9	30.6	25.7
Non-Incentive Costs - VT Statewide																				
End-Use	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033
EVT Territory	7.8	8.2	8.5	7.8	7.1	6.5	5.9	5.2	5.0	3.1	3.1	3.4	4.2	4.2	5.4	8.2	8.4	8.0	7.5	6.4
BED Territory	0.8	0.8	0.8	0.8	0.7	0.6	0.6	0.5	0.5	0.3	0.3	0.3	0.4	0.4	0.5	0.8	0.8	0.8	0.7	0.6
VT Statewide	8.6	9.0	9.4	8.5	7.8	7.1	6.5	5.7	5.5	3.4	3.5	3.7	4.6	4.6	5.9	8.9	9.2	8.8	8.2	7.0

5 OVERALL CONCLUSIONS AND RECOMMENDATIONS

5.1 DIFFERENCES BETWEEN THE 2013 AND 2011 VERMONT ELECTRIC ENERGY EFFICIENCY POTENTIAL STUDIES

Overall the estimates for maximum achievable electric energy efficiency potential in this study are slightly less than those reported in 2011.

	2011 9	Study	2013 Study			
	MWh	%	MWh	%		
Max. Achievable Potential	1,533,411	26.0%	1,450,000	23.4%		

Although there are numerous similarities between the two studies, there are also specific differences that explain why the updated results yielded the lower estimates of potential found in Table 5-1. Some of these differences include:

- The treatment of behavioral measures in the residential sector. The conservation-based behavioral savings were removed from the analysis as requested by the PSD (see Section 2.5.2 for details)
- Tightened federal standards for technologies such as residential appliances and residential water heating measures
- Increased market saturation of efficient technologies such as CFL bulbs
- A reduced fuel switching market due to fuel switching conversions that took place since the last study was completed
- Reduced NTG assumptions for specialty CFL bulbs in the residential sector

The above points do not constitute a comprehensive list of all the changes which decreased the potential. The updated study also incorporates revised assumptions which increased the energy efficiency potential for some end-uses such as the residential HVAC (Envelope) end use. The overall load forecast used for this study was also slightly higher than the previous study, which mitigated the impact of all the various reductions to the energy efficiency potential, such as those caused by the factors listed above.

5.2 **REVIEW OF MAXIMUM ACHIEVABLE RESULTS FOR THE STATE**

In summary, the potential for electric energy efficiency in Vermont by 2033 is significant. The estimated maximum achievable potential electricity savings would amount to 1,450,000 MWh, which would represent a 23.4% reduction in projected 2033 MWh sales. Table 5-1 below summarizes the electricity savings potential in Vermont by 2033. It is important to note that the cumulative annual savings estimates below are based on the modeling results from the GDS analysis, but the cost-effectiveness of the maximum achievable potential is impacted by the "front-loading" of the non-residential achievable potential which has the effect of increased potential and measures being reintroduced in the final years of the study. The reintroduction of measures in the non-residential sector increases the estimates of both the benefits and costs of the maximum achievable potential.

	Cumulative Annual MWh Savings, 2033	Cumulative Winter MW Savings, 2033	Cumulative Summer MW Savings, 2033	NPV Benefits (\$2014), millions		NPV Costs (\$2014), millions		VT Societal B/C Ratio	
Residential Sector	723,116	124	131	\$	2,438	\$	779	3.1	
C/I Sector	726,884	73	101	\$	1,802	\$	410	4.4	
All Sectors Combined	1,450,000	197	232	\$	4,241	\$	1,189	3.6	

Table 5-2: Maximum Achievable Potential Summary

The results of this study demonstrate that cost effective electric energy efficiency resources can play an expanded role in Vermont's energy resource mix over the next two decades. Table 5-2 also displays the present value of benefits and costs associated with implementing the maximum achievable potential energy savings in Vermont as well as the overall VT Societal Test benefit/cost ratio of 3.6. The potential net present savings to ratepayers in Vermont for implementation of cost effective electric energy efficiency programs over the next 20 years are approximately \$3.6 billion in 2014 dollars.

Actual energy and demand savings will depend upon the level and degree of Vermont residences and business participation in the DSM programs offered by EVT and BED. Participation is driven by a host of factors. Focused marketing and education must coincide with sufficient incentives in order for Vermont to achieve continued success in acquiring energy efficiency savings. The estimated savings and budgets are based upon a current forecast of unconstrained budgets amounts for DSM programs over the 20 year period of 2014-2033. Actual budget amounts are subject to annual review and approval by the Vermont Public Service Board. Therefore, while the figures presented in this report represent the best current estimates of savings and costs, actual results will be different.

