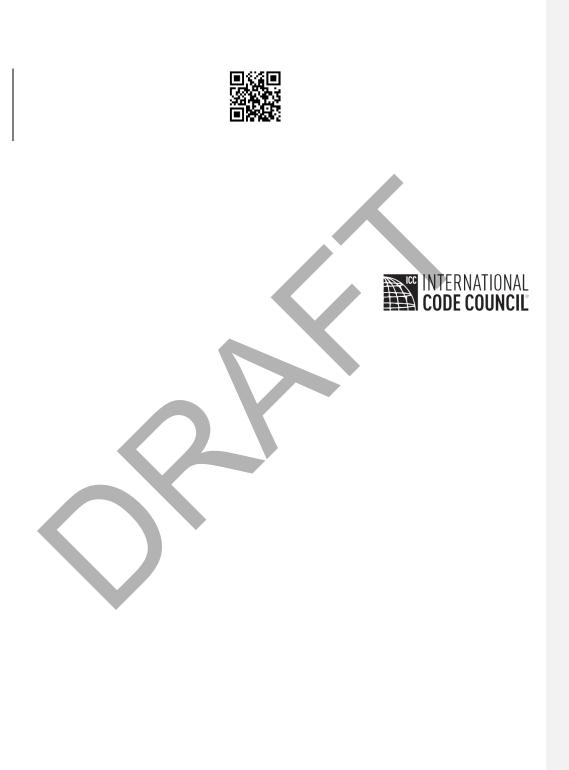
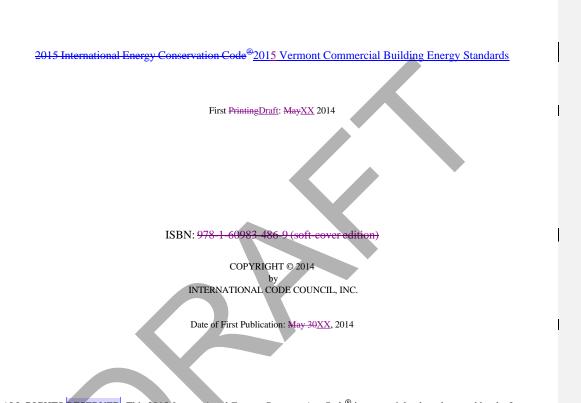


2015


NOTE: Red-lined changes are VT-specific changes to the 2015 IECC document. Yellow


shaded text denotes where the 2015 IECC has changed relative to the 2011 VT CBES.

CODE ALERT!

Sign up now to receive critical code updates and free access to videos, book excerpts and training resources.

Signup is easy, subscribe now! www.iccsafe.org/alerts

ALL RIGHTS **RESERVED**. This 2015 International Energy Conservation Code[®] is a copyrighted work owned by the International Code Council, Inc. Without advance written permission from the copyright owner, no part of this book may be reproduced, distributed or transmitted in any form or by any means, including, without limitation, electronic, optical or mechanical means (by way of example, and not limitation, photocopying, or recording by or in an information storage retrieval system). For information on permission to copy material exceeding fair use, please contact: Publications, 4051 West Flossmoor Road, Country Club Hills, IL 60478. Phone 1-888-ICC-SAFE (422-7233).

Trademarks: "International Code Council," the "International Code Council" logo and the "International Energy Conservation Code" are trademarks of the International Code Council, Inc.

Comment [NAV1]: Will be updated consistent with RBES.

PRINTED IN THE U.S.A.

PREFACE

Comment [NAV2]: All of this will be customized for final VT CBES

Introduction

Internationally, code official code official or authority having jurisdictions recognize the need for a modern, up-to-date energy conservation code addressing the design of energy-efficient building envelopes and installation of energy-efficient mechanical, lighting and power systems through requirements emphasizing performance. The *International Energy Conservation Code*[®], in this 2015 edition, is designed to meet these needs through model code regulations that will result in the optimal utilization of fossil fuel and nonde- pletable resources in all communities, large and small.

This code contains separate provisions for commercial buildings and for low-rise residential buildings (3 stories or less in height above grade). Each set of provisions, IECC—Commercial Provisions and IECC—Residential Provisions, is separately applied to buildings within their respective scopes. Each set of provisions is to be treated separately. Each contains a Scope and Administration chapter, a Definitions chapter, a General Requirements chapter, a chapter containing energy efficiency requirements and existing building provisions applicable to buildings within its scope.

This comprehensive energy conservation code establishes minimum regulations for energy-efficient buildings using prescriptive and performance-related provisions. It is founded on broad-based principles that make possible the use of new materials and new energy-efficient designs. This 2015 edition is fully compatible with all of the *International Codes*[®] (I-Codes[®]) published by the International Code Council (ICC)[®], including: the *International Building Code*[®], *International Existing Building Code*[®], *International Fire Code*[®], *International Fue Code*[®], *International Green Construction Code*[®], *International Mechanical Code*[®], *International Plumbing Code*[®], *International Private Sewage Disposal Code*[®], *International Property Maintenance Code*[®], *International Residential Code*[®], *International Swimming Pool and Spa Code*[™], *International Wildland Urban Interface Code*[®] and *International Zoning Code*[®].

The International Energy Conservation Code provisions provide many benefits, among which is the model code development process that offers an international forum for energy professionals to discuss performance and prescriptive code requirements. This forum provides an excellent arena to debate proposed revisions. This model code also encourages international consistency in the application of provisions.

Development

The first edition of the International Energy Conservation Code (1998) was based on the 1995 edition of the Model Energy Code promulgated by the Council of American Building Officials (CABO) and included changes approved through the CABO Code Development Procedures through 1997. CABO assigned all rights and responsibilities to the International Code Council and its three statutory members at that time, including Building Officials (ICBO) and Southern Building Code Congress International Conference of Building Officials (ICBO) and Southern Building Code Congress International (SBCCI). This 2015 edition presents the code as originally issued, with changes reflected in the 2000 through 2012 editions and with changes approved through the ICC Code Development Process through 2014. A new edition such as this is promulgated every 3 years.

This code is founded on principles intended to establish provisions consistent with the scope of an energy conservation code that adequately conserves energy; provisions that do not unnecessarily increase construction costs; provisions that do not restrict the use of new materials, products or methods of construction; and provisions that do not give preferential treatment to particular types or classes of materials, products or methods of construction.

Adoption

The International Code Council maintains a copyright in all of its codes and standards. Maintaining copyright allows the ICC to fund its mission through sales of books, in both print and electronic formats. The *International Energy Conservation Code* is designed for adoption and use by jurisdictions that recognize and acknowledge the ICC's copyright in the code, and further acknowledge the substantial shared value of the public/private partnership for code development between jurisdictions and the ICC.

The ICC also recognizes the need for jurisdictions to make laws available to the public. All ICC codes and ICC standards, along with the laws of many jurisdictions, are available for free in a non-downloadable form on the ICC's website. Jurisdictions should contact the ICC at adoptions@icc-safe.org to learn how to adopt and distribute laws based on the International Energy Conservation Code in a manner that provides necessary access, while maintaining the ICC's copyright.

Maintenance

The International Energy Conservation Code is kept up to date through the review of proposed changes submitted by code enforcing officials, industry representatives, design professionals and other interested parties. Proposed changes are carefully considered through an open code development process in which all interested and affected parties may participate.

The contents of this work are subject to change through both the code development cycles and the governmental body that enacts the code into law. For more information regarding the code development process, contact the Codes and Standards Development Department of the International Code Council.

While the development procedure of the *International Energy Conservation Code* assures the highest degree of care, the ICC, its members and those participating in the development of this code do not accept any liability resulting from compliance or noncompliance with the provisions because the ICC does not have the power or authority to police or enforce compliance with the contents of this code. Only the governmental body that enacts the code into law has such authority.

Code Development Committee Responsibilities (Letter Designations in Front of Section Numbers)

In each code development cycle, proposed changes to the code are considered at the Committee Action Hearings by the applicable International Code Development Committee. The IECC—Commercial Provisions (sections designated with a "C" prior to the section number) are primarily maintained by the Commercial Energy Code Development Committee. The IECC—Residential Provisions (sections designated with an "R" prior to the section number) are maintained by the Residential Energy Code Development Committee. The iECC—Residential Energy Code Development Committee. The is designated with an "R" prior to the section number) are maintained by the Residential Energy Code Development Committee. This is designated in the chapter headings by a [CE] and [RE], respectively.

Maintenance responsibilities for the IECC are designated as follows:

[CE] = Commercial Energy Code Development Committee

[RE] = Residential Energy Code Development Committee

For the development of the 2018 edition of the I-Codes, there will be three groups of code development committees and they will meet in separate years. Note that these are tentative groupings.

Group A Codes (Heard in 2015, Code Change Proposals	Group B Codes (Heard in 2016, Code Change Proposals	Group C Codes (Heard in 2017, Code Change Proposals
Deadline: January 12, 2015)	Deadline: January 11, 2016)	Deadline: January 11, 2017)
International Building Code —Fire Safety (Chapters 7, 8, 9, 14, 26) —Means of Egress (Chapters 10, 11, Appendix E) —General (Chapters 2-6, 12, 27-33, Appendices A, B, C, D, K)	Administrative Provisions (Chapter 1 of all codes except IRC and IECC, adminis- trative updates to currently referenced standards, and designated definitions)	
International Fuel Gas Code	International Building Code -Structural (Chapters 15-25, Appendices F, G, H, I, J, L, M)	
International Existing Building Code	International Energy Conservation Code	
International Mechanical Code	International Fire Code	
International Plumbing Code	International Residential Code –IRC-Building (Chapters 1-10, Appendices E, F, H, J, K, L, M, O, R, S, T, U)	
International Private Sewage Disposal Code	International Wildland-Urban Interface Code	
International Property Maintenance Code		
International Residential Code –IRC-Mechanical (Chapters 12-24) –IRC-Plumbing (Chapters 25-33, Appendices G, I, N, P)		
International Swimming Pool and Spa Code		
International Zoning Code		

Note: Proposed changes to the ICC Performance Code will be heard by the code development committee noted in brackets [] in the text of the code.

Marginal Markings

Solid vertical lines in the margins within the body of the code indicate a technical change from the requirements of the 2012 edition. Deletion indicators in the form of an arrow ($\xrightarrow{\bullet}$) are provided in the margin where an entire section, paragraph, exception or table has been deleted or an item in a list of items or a table has been deleted.

A single asterisk [*] placed in the margin indicates that text or a table has been relocated within the code. A double asterisk [**] placed in the margin indicates that the text or table immediately following it has been relocated there from elsewhere in the code. The following table indicates such relocations in the 2015 edition of the *International Energy Conservation Code*.

2015 LOCATION	2012 LOCATION
C501	C101.4.1
C501.6	C101.4.2
C502 through C504	C101.4.3
C505	C101.4.4
C503.2	C101.4.5
C402.1.1	C101.5.2
C402.3	C402.2.1.1

2015 LOCATION	2012 LOCATION
R501	R101.4.1
R501.6	R101.4.2
R502 through R504	R101.4.3
R505	R101.4.4
R503.2	R101.4.5
R402.1	R101.5.2
R503.1.1.1	R402.3.6

Italicized Terms

Selected terms set forth in Chapter 2, Definitions, are italicized where they appear in code text. Such terms are not italicized where the definition set forth in Chapter 2 does not impart the intended meaning in the use of the term. The terms selected have definitions that the user should read carefully to facilitate better understanding of the code.

EFFECTIVE USE OF THE INTERNATIONAL ENERGY CONSERVATION CODE

Comment [NAV3]: To be updated for final VT CBES

The International Energy Conservation Code (IECC) is a model code that regulates minimum energy conservation requirements for new buildings. The IECC addresses energy conservation requirements for all aspects of energy uses in both commercial and residential construction, including heating and ventilating, lighting, water heating, and power usage for appliances and building systems.

The IECC is a design document. For example, before one constructs a building, the designer must determine the minimum insulation *R*-values and fenestration *U*-factors for the building exterior envelope. Depending on whether the building is for residential use or for commercial use, the IECC sets forth minimum requirements for exterior envelope insulation, window and door *U*-factors and SHGC ratings, duct insulation, lighting and power efficiency, and water distribution insulation.

Arrangement and Format of the 2015 IECC

The IECC contains two separate sets of provisions—one for commercial buildings and one for residential buildings. Each set of provisions is applied separately to buildings within their scope. The IECC—Commercial Provisions apply to all buildings except for residential buildings three stories or less in height. The IECC—Residential Provisions apply to detached one- and two-family dwellings and multiple single-family dwellings as well as Group R-2, R-3 and R-4 buildings three stories or less in height. These scopes are based on the definitions of "Commercial building" and "Residential building," respectively, in Chapter 2 of each set of provisions. Note that the IECC—Commercial Provisions therefore contain provisions for residential buildings five stories or greater in height. Each set of provisions is divided into five different parts:

Chapters	Subjects
1-2	Administration and definitions
3	Climate zones and general materials requirements
4	Energy efficiency requirements
5	Existing buildings
6	Referenced standards

The following is a chapter-by-chapter synopsis of the scope and intent of the provisions of the *International Energy Conservation Code* and applies to both the commercial and residential energy provisions:

Chapter 1 Scope and Administration. This chapter contains provisions for the application, enforcement and administration of subsequent requirements of the code. In addition to establishing the scope of the code, Chapter 1 identifies which buildings and structures come under its purview. Chapter 1 is largely concerned with maintaining "due process of law" in enforcing the energy conservation criteria contained in the body of this code. Only through careful observation of the administrative provisions can the <u>code_official_code_official_or_authority_having_jurisdiction</u> reasonably expect to demonstrate that "equal pro- tection under the law" has been provided.

Chapter 2 Definitions. Chapter 2 is the repository of the definitions of terms used in the body of the code. Codes are technical documents and every word, term and punctuation mark can impact the meaning of the code text and the intended results. The code often uses terms that have a unique meaning in the code and the code meaning can differ substantially from the ordinarily understood meaning of the term as used outside of the code.

The terms defined in Chapter 2 are deemed to be of prime importance in establishing the meaning and intent of the code text. The user of the code should be familiar with and consult this chapter because the definitions are essential to the correct interpretation of the code and the user may not be aware that a term is defined.

Additional definitions regarding climate zones are found in Tables 301.3(1) and (2). These are not listed in Chapter 2.

Where understanding of a term's definition is especially key to or necessary for understanding of a particular code provision, the term is shown in *italics* wherever it appears in the code. This is true only for those terms that have a meaning that is unique to the code. In other words, the generally understood meaning of a term or phrase might not be sufficient or consistent with the meaning prescribed by the code; therefore, it is essential that the code-defined meaning be known.

Guidance regarding tense, gender and plurality of defined terms as well as guidance regarding terms not defined in this code is provided.

Chapter 3 General Requirements. Chapter 3 specifies the climate zones that will serve to establish the exterior design conditions. In addition, Chapter 3 provides interior design conditions that are used as a basis for assumptions in heating and cooling load calculations, and provides basic material requirements for insulation materials and fenestration materials.

Climate has a major impact on the energy use of most buildings. The code establishes many requirements such as wall and roof insulation *R*-values, window and door thermal transmittance requirement (*U*-factors) as well as provisions that affect the mechanical systems based upon the climate where the building is located. This chapter contains information that will be used to properly assign the building location into the correct climate zone and is used as the basis for establishing requirements or elimination of requirements.

Chapter 4 Energy Efficiency. Chapter 4 of each set of provisions contains the technical requirements for energy efficiency.

Commercial Energy Efficiency. Chapter 4 of the IECC—Commercial Provisions contains the energy-efficiency-related requirements for the design and construction of most types of commercial buildings and residential buildings greater than three stories in height above grade. Residential buildings, townhouses and garden apartments three stories or less in height are covered in the IECC—Residential Provisions. This chapter defines requirements for the portions of the building and building systems that impact energy use in new commercial construction and new residential construction greater than three stories in height, and promotes the effective use of energy. The provisions within the chapter promote energy efficiency in the building envelope, the heating and cooling system and the service water heating system of the building.

Residential Energy Efficiency. Chapter 4 of the IECC—Residential Provisions contains the energy-efficiency-related requirements for the design and construction of residential buildings regulated under this code. It should be noted that the definition of a *residential building* in this code is unique for this code. In this code, a *residential building* is a detached one- and two-family dwelling and multiple single-family dwellings as well as R-2, R-3 or R-4 buildings three stories or less in height. All other buildings, including residential buildings greater than three stories in height, are regulated by the energy conservation requirements in the IECC—Commercial Provisions. The applicable portions of a residential building must comply with the provisions within this chapter for energy efficiency. This chapter defines requirements for the portions of the building and building systems that impact energy use in new residential construction and promotes the effective use of energy. The provisions within the chapter promote energy efficiency in the building.

Chapter 5 Existing Buildings. Chapter 5 of each set of provisions contains the technical energy efficiency requirements for existing buildings. Chapter 5 provisions address the maintenance of buildings in compliance with the code as well as how additions, alterations, repairs and changes of occupancy need to be addressed from the standpoint of energy efficiency. Specific provisions are provided for historic buildings.

Chapter 6 Referenced Standards. The code contains numerous references to standards that are used to regulate materials and methods of construction. Chapter 6 contains a comprehensive list of all standards that are referenced in the code. The standards are part of the code to the extent of the reference to the standard. Compliance with the referenced standard is necessary for compliance with this code. By providing specifically adopted standards, the construction and installation requirements necessary for compliance with the code can be readily determined. The basis for code compliance is, therefore, established and available on an equal basis to the code official code official or authority having jurisdiction, contractor, designer and owner.

Chapter 6 is organized in a manner that makes it easy to locate specific standards. It lists all of the referenced standards, alphabetically, by acronym of the promulgating agency of the standard. Each agency's standards are then listed in either alphabetical or numeric order based upon the standard identification. The list also contains the title of the standard; the edition (date) of the standard referenced; any addenda included as part of the ICC adoption; and the section or sections of this code that reference the standard.

Abbreviations and Notations

The following is a list of common abbreviations and units of measurement used in this code. Some of the abbreviations are for terms defined in Chapter 2. Others are terms used in various tables and text of the code.

AFUE	Annual fuel utilization efficiency
bhp	Brake horsepower (fans)
Btu	British thermal unit
Btu/h-ft²	Btu per hour per square foot
C-factor	See Chapter 2—Definitions
CDD	Cooling degree days
cfm	Cubic feet per minute
cfm/ft ²	Cubic feet per minute per square foot
ci	Continuous insulation
СОР	Coefficient of performance
DCV	Demand control ventilation
°C	Degrees Celsius
°F	Degrees Fahrenheit
DWHR	Drain water heat recovery
DX	Direct expansion
E _c	Combustion efficiency
E _v	Ventilation efficiency
E_t	Thermal efficiency
EER	Energy efficiency ratio
EF	Energy factor
ERI	Energy Rating index
F-factor	See Chapter 2—Definitions

FDD	Fault detection and diagnostics
FEG	Fan efficiency grade
FL	Full load
ft²	Square foot
gpm	Gallons per minute
HDD	Heating degree days
hp	Horsepower
HSPF	Heating seasonal performance factor
HVAC	Heating, ventilating and air conditioning
IEER	Integrated energy efficiency ratio
IPLV	Integrated Part Load Value
Kg/m²	Kilograms per square meter
kW	Kilowatt
LPD	Light power density (lighting power allowance)
L/s	Liters per second
Ls	Liner system
m²	square meters
MERV	Minimum efficiency reporting value
NAECA	National Appliance Energy Conservation Act
NPLV	Nonstandard Part Load Value
Ра	Pascal
PF	Projection factor
pcf	Pounds per cubic foot
psf	Pounds per square foot
РТАС	Packaged terminal air conditioner
PTHP	Packaged terminal heat pump
R-value	See Chapter 2—Definitions
SCOP	Sensible coefficient of performance
SEER	Seasonal energy efficiency ratio
SHGC	Solar Heat Gain Coefficient
SPVAC	Single packaged vertical air conditioner
SPVHP	Single packaged vertical heat pump
SRI	Solar reflectance index
SWHF	Service water heat recovery factor
U-factor	See Chapter 2—Definitions
VAV	Variable air volume
VRF	Variable refrigerant flow
VT	Visible transmittance
W	Watts
W.C.	Water column
w.g.	Water gauge

х

LEGISLATION

Jurisdictions wishing to adopt the 2015 International Energy Conservation Code as an enforceable regulation governing energyefficient building envelopes and installation of energy efficient mechanical, lighting and power systems should ensure that cer-tain factual information is included in the adopting legislation at the time adoption is being considered by the appropriate governmental body. The following sample adoption legislation addresses several key elements, including the information required for insertion into the code text.

SAMPLE LEGISLATION FOR ADOPTION OF THE INTERNATIONAL ENERGY CONSERVATION CODE ORDINANCE NO.

A[N] [ORDINANCE/STATUTE/REGULATION] of the [JURISDICTION] adopting the 2015 edition of the International Energy Conser vation Code, regulating and governing energy efficient building envelopes and installation of energy efficient mechanical, light-ing and power systems in the [JURISDICTION]; providing for the issuance of permits and collection of fees therefor; repealing [ORDINANCE/STATUTE/REGULATION] No._____of the [JURISDICTION] and all other ordinances or parts of laws in conflict therewith.

The [GOVERNING BODY] of the [JURISDICTION] does ordain as follows:

Section 1. That a certain document, three (3) copies of which are on file in the office of the [TITLE OF JURISDICTION'S KEEPER OF RECORDS] of [NAME OF JURISDICTION], being marked and designated as the International Energy Conservation Code, 2015 edition, as published by the International Code Council, be and is hereby adopted as the Energy Conservation Code of the [JURISDICTION], in the State of [STATE NAME] for regulating and governing energy efficient building envelopes and installation of energy efficient mechanical, lighting and power systems as herein provided; providing for the issuance of permits and collection of fees therefor; and each and all of the regulations, provisions, provisions, provisions, conditions and terms of said Energy Conservation Code on file in the office of the [JURISDICTION] are hereby referred to, adopted, and made a part hereof, as if fully set out in this legislation, with the additions, insertions, deletions and changes, if any, prescribed in Section 2 of this ordinance. Section 2. The following sections are hereby revised:

Sections C101.1 and R101.1. Insert: [NAME OF JURISDICTION].

Section 3. That [ORDINANCE/STATUTE/REGULATION] No. of [JURISDICTION] entitled [FILL IN HERE THE COMPLETE TITLE OF THE LEGISLATION OR LAWS IN EFFECT AT THE PRESENT TIME SO THAT THEY WILL BE REPEALED BY DEFINITE MEN-

TION] and all other ordinances or parts of laws in conflict herewith are hereby repealed.

Section 4. That if any section, subsection, sentence, clause or phrase of this legislation is, for any reason, held to be unconstitutional, such decision shall not affect the validity of the remaining portions of this ordinance. The [GOVERNING BODY] hereby declares that it would have passed this law, and each section, subsection, clause or phrase thereof, irrespective of the fact that any one or more sections, subsections, sentences, clauses and phrases be declared unconstitutional.

Section 5. That nothing in this legislation or in the Energy Conservation Code hereby adopted shall be construed to affect any suit or proceeding impending in any court, or any rights acquired, or liability incurred, or any cause or causes of action acquired or existing, under any act or ordinance hereby repealed as cited in Section 3 of this law; nor shall any just or legal right or remedy of any character be lost, impaired or affected by this legislation.

Section 6. That the [JURISDICTION'S KEEPER OF RECORDS] is hereby ordered and directed to cause this legislation to be pub-lished. (An additional provision may be required to direct the number of times the legislation is to be published and to specify that it is to be in a newspaper in general circulation. Posting may also be required.)

Section 7. That this law and the rules, regulations, provisions, requirements, orders and matters established and adopted hereby shall take effect and be in full force and effect [TIME PERIOD] from and after the date of its final passage and adoption.

TABLE OF CONTENTS

IECC—COMMERCIAL PROVISIONSC-1	<u>IECC RESIDENTIAL PROVISIONSR-1</u>
CHAPTER 1 SCOPE AND ADMINISTRATIONC-3	CHAPTER 1 SCOPE AND ADMINISTRATION
CHAPTER 2 DEFINITIONS	CHAPTER 2 DEFINITIONSR-7 CHAPTER 3 CENERAL REQUIREMENTSR-11
CHAPTER 3 GENERAL REQUIREMENTS C-13	CHAPTER 4 RESIDENTIAL ENERGY EFFICIENCY R 29 CHAPTER 5
CHAPTER 4 COMMERCIAL ENERGY EFFICIENCYC-31	EXISTING BUILDINGS
CHAPTER 5 EXISTING BUILDINGSC-95	FOR WORST-CASE TESTING OF ATMOSPHERIC VENTING SYSTEMS UNDER
CHAPTER 6 REFERENCED STANDARDSC-99	R402.4 OR R405
INDEX	CONDITIONS ≤ 5ACH _{\$0} R-49
	APPENDIX RB-SOLAR-READY PROVISIONS-
	DETACHED ONE- AND TWO- FAMILY DWELLINGS, MULTIPLESINGLE FAMILY DWELLINGS
	(TOWNHOUSES)

xiii

IECC—COMMERCIAL PROVISIONS

TABLE OF CONTENTS

CHAPTER 1 SCOPE AND ADMINISTRATIONC-3	CHAPTER 4 COMMERCIAL ENERGY EFFICIENCY C-31
PART 1—SCOPE AND APPLICATIONC-3	Section
Section	C401 General
C101 Scope and General Requirements	C402 Building Envelope Requirements C-31
C102 Alternate Materials—Method of Construction, Design or Insulating	C403 Building Mechanical Systems C-40
SystemsC-3	C404 Service Water Heating
PART 2—ADMINISTRATION AND	C405 Electrical Power and Lighting Systems C-71
ENFORCEMENTC-3	C406 Additional Efficiency Package Options C-83
C103 Construction DocumentsC-3	C407 Total Building Performance
C104 Inspections C-4	
C105 ValidityC-5	C408 System Commissioning C-90
C106 Referenced Standards C-5	
C107 Fees C-5	CHAPTER 5 EXISTING BUILDINGS
C108 Stop Work OrderC-5	Section
C109 Board of Appeals	C501 General
CHAPTER 2 DEFINITIONSC-7	
Section	C502 Additions C-95
C201 General	C503 Alterations C-96
C202 General Definitions	C504 Repairs C-96
CHAPTER 3 GENERAL REQUIREMENTS C-13	C505 Change of Occupancy or Use
Section	
C301 Climate Zones	CHAPTER 6 REFERENCED STANDARDS C-99
C302 Design Conditions C-28	
C303 Materials, Systems and EquipmentC-28	INDEX C-107

CHAPTER 1 [CE]

SCOPE AND ADMINISTRATION

PART 1—SCOPE AND APPLICATION

SECTION C101 SCOPE AND GENERAL REQUIREMENTS

C101.1 Title. This code shall be known as the *International Energy Conservation Code* of [NAME OF JURISDICTION]2015 Commercial Building Energy Standards (CBES) of Vermont, and shall be cited as such. It is referred to herein as "this code."

C101.2 Scope. This code applies to *commercial buildings* and the buildings' sites and associated systems and equipment._

Exception: This code shall not apply to farm structures as defined in 24 V.S.A. § 4413."

C101.3 Intent. This code shall regulate the design and construction of buildings for the use and conservation of energy over the life of each building. This code is intended to provide flexibility to permit the use of innovative approaches and techniques to achieve this objective. This code is not intended to abridge safety, health or environmental requirements contained in other applicable codes or ordinances.

C101.4 Applicability. Where, in any specific case, different sections of this code specify different materials, methods of construction or other requirements, the most restrictive shall govern. Where there is a conflict between a general requirement and a specific requirement, the specific requirement

shall govern.

 \mathbf{v}

C101.4.1 Mixed occupancy. Where a building includes both *residential* and *commercial* occupancies, each occupancy shall be separately considered and meet the applicable provisions of IECC Commercial Provisions or IECC Residential Provisions. the following shall apply:

 With respect to a structure that is three stories or less in height and is a mixed-use building that shares residential and commercial users,

- i. The term "residential building" shall include the living spaces in the structure and the nonliving spaces in the structure that serve only the residential users such as common hallways, laundry facilities, residential management offices, community rooms, storage rooms, and foyers.
- ii. The term "commercial building" shall include all commercial uses within the structure and all common areas and facilities that serve both residential and commercial uses; and
- With respect to a structure that is four stories or more in height, the term "commercial building" shall include all uses and areas within the structure.

C101.5 Compliance. *Residential buildings* shall meet the provisions of <u>IECC</u>—Residential Provisions.the Residential Building Energy Standards (RBES) Commercial buildings shall meet the provisions of <u>IECC</u>—Commercial

ProvisionsCBES.

C101.5.1 Compliance materials. The *code official code official or authority having jurisdiction* shall be permitted to approve specific computer software, work- sheets, compliance manuals and other similar materials that meet the intent of this code

C101.5.2 Exempt Buildings. The following buildings, or portions thereof separated from the remainder of the building by building thermal envelope assemblies complying with Section C402 shall be exempt from the building thermal envelope provisions of Section C402. 1. Low Energy Buildings. Those with a peak design rate of energy usage less than 3.4 Btu/h • ft² (10.7

- W/m²) or 1.0 watt per square foot (10.7 W/m²) of floor area for space conditioning purposes. Unconditioned Buildings. Those that do not contain conditioned space.
- Greenhouses.

3

*

Inflatable buildings. Those above ground portions that are air-supported structures shall be exempt only from the thermal envelope provisions of this code.

SECTION C102 ALTERNATEMATERIALS— METHOD OF CONSTRUCTION, DESIGN OR INSULATING SYSTEMS

C102.1 General. This code is not intended to prevent the use of any material, method of construction, design or insulating system not specifically prescribed herein, provided that such construction, design or insulating system has been *approved* by the *code official_code official or authority having jurisdiction* as meeting the intent of this code.

C102.1.1 Above code programs. The *code official code official or authority having jurisdiction* or other authority having jurisdiction shall be permitted to deem a national, state or local energy efficiency program to exceed the energy efficiency required by this code. Buildings *approved* in writing by such an energy efficiency program shall be considered in compliance with this code. The requirements identified as "mandatory" in Chapter 4 shall be met.

PART 2—ADMINISTRATION AND ENFORCEMENT

SECTION C103 CONSTRUCTION DOCUMENTS

C103.1 General. Where required, Cconstruction documents and other support- ing data shall be submitted in one or more sets with each application for a permit. The construction documents shall be prepared by a registered design professional where required by the statutes of the jurisdiction in which the project is to be constructed. Where special conditions exist, the *code official code official or authority having jurisdiction* is authorized to require necessary construction documents to be prepared by a registered design professional.

Exception: The <u>code official code official or authority having</u> <u>jurisdiction</u> is authorized to waive the requirements for construction documents or other support- ing data if the <u>code</u> <u>official code official or authority having jurisdiction</u> determines they are not neces- sary to confirm compliance with this code.

C103.2 Information on construction documents. Where required, Cconstruction documents shall be drawn to scale upon suitable mate- rial. Electronic media documents are permitted to be submitted where *approved* by the *code official code official or authority having inrisdiction*. Construction documents shall be of sufficient clarity to indicate the location, nature and extent of the work proposed, and show in sufficient detail pertinent data and features of the building, systems and equipment as herein governed. Details shall include, but are not limited to, the following as applicable:

2015 INTERNATIONAL ENERGY CONSERVATION CODE®

- **1.3.** Insulation materials and their *R*-values.
- 2.4. Fenestration *U*-factors and solar heat gain coefficients (SHGCs).
- 5. Area-weighted *U*-factor and solar heat gain coefficient (SHGC) calculations.
- 6.Design ambient temperatures.

7. Interior temperatures for heating and cooling modes.

- 8. Relative humidity setpoints.
- 3.9. Ventilation rates.
- 4.10. Mechanical system design criteria.
- 5.11. Mechanical and service water heating system and equipment types, sizes and efficiencies.
- 6.12. Economizer description.
- Equipment and system controls.
- Fan motor horsepower (hp) and controls.
 <u>9-15</u> Duct sealing, duct and pipe insulation and location.
- 0.16. Lighting fixture schedule with wattage and control narrative.
- 11.17.
 Location of *daylight* zones on floor plans.

 42.18.
 Air sealing details.

Mechanical equipment schedules shall be included in the submitted construction documents and shall include, but are not limited to, the following information:

- Equipment efficiencies
- Fan and pump nameplate motor and brake horsepower
 Hydronic system (if applicable) supply and return
- water design temperatures for boilers and all terminal
- devices (e.g. baseboards, unit ventilators, etc) 4. Steam system (if applicable) design pressure for boilers and all terminal devices

C-3

Comment [NAV4]: Needs to start at #1. Formatting will not allow.

SCOPE AND ADMINISTRATION

C103.2.1 Building thermal envelope depiction. The *building's thermal envelope* shall be represented on the construction drawings.

C103.3 Examination of documents. The *code official code official or authority having jurisdiction* shall examine or cause to be examined the accompanying con-struction documents and shall ascertain whether the construction indicated and described is in accordance with the requirements of this code and other pertinent laws or ordinances. The *code official code official or authority having jurisdiction* is authorized to utilize a registered design professional, or other *approved* entity not affiliated with the building design or construction, in conducting the review of the plans and specifications for compliance with the code.

C103.3.1 Approval of construction documents. When the <u>eode official code official or authority having</u> <u>jurisdiction</u> issues a permit where construction documents are required, the construction documents shall be endorsed in writing and stamped "Reviewed for Code Compliance." Such approved construction documents shall not be changed, modified or altered without authorization from the <u>code official code official or authority</u> <u>having jurisdiction</u>. Work shall be done in accor- dance with the approved construction documents.

One set of construction documents so reviewed shall be retained by the <u>code official code official or authority</u> <u>having jurisdiction</u>. The other set shall be returned to the applicant, kept at the site of work and shall be open to inspection by the <u>code official code official or authority</u> <u>having jurisdiction</u> or a duly autho- rized representative.

C103.3.2 Previous approvals. This code shall not require changes in the construction documents, construction or designated occupancy of a structure for which a lawfull permit has been heretofore issued or otherwise lawfully authorized, and the construction of which has been pursued in good faith within 180 days after the effective date of this code and has not been abandoned.

C103.3.3 Phased approval. The *code official_code official or authority having jurisdiction* shall have the authority to issue a permit for the construction of part of an energy conservation system before the construction documents for the entire system have been submitted or *approved*, provided adequate information and detailed statements have been filed complying with all pertinent requirements of this code. The holders of such permit shall proceed at their own risk without assurance that the permit for the entire energy conservation system will be granted.

C103.4 Amended construction documents. Changes made during construction that are not in compliance with the *approved* construction documents shall be resubmitted for approval as an amended set of construction documents.

C103.5 Retention of construction documents. One set of *approved* construction documents shall be retained by the *code official code official or authority having jurisdiction* for a period of not less than 180 days from date of completion of the permitted work, or as required by state or local laws.

SECTION C104 INSPECTIONS C104.1 General. <u>Where required</u>, <u>C</u>construction or work for which a permit is required shall be subject to inspection by the <u>code official code official or authority having jurisdiction</u> or

his or her designated agent, and such construction or work shall remain accessible and exposed for inspection purposes until *approved*. It shall be the duty of the permit applicant to cause the work to remain accessible and exposed for inspec- tion purposes. Neither the *eode official code official or authority having jurisdiction* nor the jurisdiction shall be liable for expense entailed in the removal or replace- ment of any material, product, system or building component required to allow inspection to validate compliance with this code.

C104.2 Required inspections approvals.

Work shall not be done beyond the point indicated in each successive inspection without first obtaining the approval of the *code official or other authority having jurisdiction*. The *code official or other authority hav-ing jurisdiction*, upon notification, shall make the requested inspections and shall either indicate the portion of the con- struction that is satisfactory as completed, or notify the permit holder or his or her agent wherein the same fails to comply with this code. Any portions that do not comply shall be cor- rected and such portion shall not be covered or concealed until authorized by the *code official or other authority having jurisdiction*.

The *code official* or his or her designated agent, upon notification, shall make the inspections set forth in Sections C104.2.1 through C104.2.6.

C104.2.1 Footing and foundation inspection. Inspections associated with footings and foundations shall verify compliance with the code as to *R* value, location, thick ness, depth of burial and protection of insulation as required by the code and *approved* plans and specifica tions.

C104.2.2 Framing and rough-in inspection. Inspections at framing and rough in shall be made before application of interior finish and shall verify compliance with the code as to types of insulation and corresponding *R* values and their correct location and proper installation; fenestration properties (U factor, SHGC and VT) and proper installa tion; and air leakage controls as required by the code and approved plans and specifications.

C104.2.3 Plumbing rough in inspection. Inspections at plumbing rough in shall verify compliance as required by the code and *approved* plans and specifications as to types of insulation and corresponding *R*-values and protection; required controls; and required heat traps.

C104.2.4 Mechanical rough in inspection. Inspections at mechanical rough in shall verify compliance as required by the code and *approved* plans and specifications as to installed HVAC equipment type and size; required controls, system insulation and corresponding *R* value; system and damper air leakage; and required energy recovery and economizers.

C104.2.5 Electrical rough in inspection. Inspections at electrical rough in shall verify compliance as required by the code and *approved* plans and specifications as to installed lighting systems, components and controls; and installation of an electric meter for each dwelling unit.

C104.2.6 Final inspection. The building shall have a final inspection and shall not be occupied until *approved*. The final inspection shall include verification of the installation and proper operation of all required building controls, and documentation verifying activities associated with required *building commissioning* have been conducted and findings of noncompliance corrected. Buildings, or portions thereof, shall not be considered for a final inspection until the *code official or authority having jurisdiction* has received a letter of transmittal from the building owner acknowledging that the building owner has received the Preliminary Commissioning Report as required in Section C408.2.4.

C104.3 Reinspection. A building shall be reinspected when determined necessary by the *code official code official or authority having jurisdiction*.

SCOPE AND ADMINISTRATION

SCOPE AND ADMINISTRATION

or provision of this code.

C104.4 Approved inspection agencies. The *code official<u>code</u> official<u>or</u> authority having jurisdiction</u> is authorized to accept reports of third-party inspection agencies not affiliated with the building design or construction, provided such agencies are <i>approved* as to qualifications and reliability relevant to the building components and systems they are inspecting.

C104.5 Inspection requests. It shall be the duty of the holder of the permit or their duly authorized agent to notify the *eode efficialcode official or authority having jurisdiction* when work is ready for inspection. It shall be the duty of the permit holder to provide access to and means for inspections of such work that are required by this code.

C104.6 Reinspection and testing. Where any work or installation does not pass an initial test or inspection, the necessary corrections shall be made to achieve compliance with this code. The work or installation shall then be resubmitted to the *ende official_code official or authority having jurisdiction* for inspection and testing.

C104.7 Approval. After the prescribed tests and inspections indicate that the work complies in all respects with this code, a notice of approval shall be issued by the *code officialcode official or authority having jurisdiction*.

C104.7.1 Revocation. The *code official code official or authority having jurisdiction* is authorized to, in writing, suspend or revoke a notice of approval issued under the provisions of this code wherever the certificate is issued in error, or on the basis of incorrect information supplied, or where it is determined that the *building* or structure, premise, or portion thereof is in violation of any ordinance or regulation or any of the provisions of this code.

SECTION C105 VALIDITY

C105.1 General. If a portion of this code is held to be illegal or void, such a decision shall not affect the validity of the remainder of this code.

SECTION C106 REFERENCED STANDARDS

C106.1 Referenced codes and standards. The codes and standards referenced in this code shall be those listed in Chapter 6, and such codes and standards shall be considered as part of the requirements of this code to the prescribed extent of each such reference and as further regulated in Sections C106.1.1 and C106.1.2.

C106.1.1 Conflicts. Where conflicts occur between provisions of this code and referenced codes and standards, the provisions of this code shall apply.

C106.1.2 Provisions in referenced codes and standards. Where the extent of the reference to a referenced code or standard includes subject matter that is within the scope of this code, the provisions of this code, as applicable, shall take precedence over the provisions in the referenced code

or standard.

C106.2 Application of references. References to chapter or section numbers, or to provisions not specifically identified by number, shall be construed to refer to such chapter, section

C106.3 Other laws. The provisions of this code shall not be deemed to nullify any provisions of local, state or federal law.

SECTION C107 FEES

C107.1 Fees. A permit shall not be issued until the fees prescribed in Section C107.2 have been paid, nor shall an amendment to a permit be released until the additional fee, if any, has been paid.

C107.2 Schedule of permit fees. A fee for each permit shall be paid as required, in accordance with the schedule as estab—lished by the applicable governing authority.

C107.3 Work commencing before permit issuance. Any person who commences any work before obtaining the necessary permits shall be subject to an additional fee established by the *code official* that shall be in addition to the required permit fees.

C107.4 Related fees. The payment of the fee for the construction, alteration, removal or demolition of work done in connection to or concurrently with the work or activity authorized by a permit shall not relieve the applicant or holder of the permit from the payment of other fees that are prescribed by law. C107.5 Refunds. The code official is authorized to establish a refund policy.

SECTION C108 STOP

2015 INTERNATIONAL ENERGY CONSERVATION CODE®

WORK ORDER

C108.1 Authority. Where the *code official* finds any work regulated by this code being performed in a manner either contrary to the provisions of this code or dangerous or unsafe, the *code official* is authorized to issue a stop work order.

C108.2 Issuance. The stop work order shall be in writing and shall be given to the owner of the property involved, the owner's authorized agent, or to the person doing the work. Upon issuance of a stop work order, the cited work shall immediately cease. The stop work order shall state the reason for the order and the conditions under which the cited work will be permitted to resume.

C108.3 Emergencies. Where an emergency exists, the *code* official shall not be required to give a written notice prior to stopping the work.

C108.4 Failure to comply. Any person who shall continue any work after having been served with a stop work order, except such work as that person is directed to perform to remove a violation or unsafe condition, shall be liable to a fine as set by the applicable governing authority.

SECTION C109 BOARD OF APPEALS

C109.1 General. In order to hear and decide appeals of orders, decisions or determinations made by the *code official* relative to the application and interpretation of this code, there shall be and is hereby created a board of appeals. The

C-5

SCOPE AND ADMINISTRATION

code official shall be an ex officio member of said board but shall not have a vote on any matter before the board. The board of appeals shall be appointed by the governing body and shall hold office at its pleasure. The board shall adopt rules of procedure for conducting its business, and shall render all decisions and findings in writing to the appellant with a duplicate copy to the *code official*.

C109.2 Limitations on authority. An application for appeal shall be based on a claim that the true intent of this code or the rules legally adopted thereunder have been incorrectly interpreted, the provisions of this code do not fully apply or an equally good or better form of construction is proposed. The board shall not have authority to waive requirements of this code.

C109.3 Qualifications. The board of appeals shall consist of members who are qualified by experience and training and are not employees of the jurisdiction.

CHAPTER 2 [CE]

DEFINITIONS

SECTION C201 GENERAL

C201.1 Scope. Unless stated otherwise, the following words and terms in this code shall have the meanings indicated in this chapter.

C201.2 Interchangeability. Words used in the present tense include the future; words in the masculine gender include the feminine and neuter; the singular number includes the plural and the plural includes the singular.

C201.3 Terms defined in other codes. Terms that are not defined in this code but are defined in the *International Building Code*, *International Fire Code*, *International Fuel Gas Code*, *International Mechanical Code*, *International Plumbing Code* or the *International Residential Code* shall have the meanings ascribed to them in those codes.

C201.4 Terms not defined. Terms not defined by this chapter shall have ordinarily accepted meanings such as the context implies.

SECTION C202 GENERAL DEFINITIONS

ABOVE-GRADE WALL. See "Wall, above-grade."

ACCESSIBLE. Admitting close approach as a result of not being guarded by locked doors, elevation or other effective means (see "Readily *accessible*").

ADDITION. An extension or increase in the *conditioned* space floor area or height of a building or structure.

AIR BARRIER. Materials assembled and joined together to provide a barrier to air leakage through the building envelope. An air barrier may be a single material or a combination of materials.

AIR CURTAIN. A device, installed at the building entrance, that generates and discharges a laminar air stream intended to prevent the infiltration of external, unconditioned air into the conditioned spaces, or the loss of interior, conditioned air to the outside.

ALTERATION. Any construction, retrofit or renovation to an existing structure other than repair or addition that requires a permit. Also, a change in a building, electrical, gas, mechanical or plumbing system that involves an extension, addition or change to the arrangement, type or purpose of the original installation that requires a permit.

APPROVED. Approval by the <u>code official code official or</u> <u>authority having jurisdiction</u> as a result of investigation and tests conducted by him or her, or by reason of accepted principles or tests by nationally recognized organizations.

APPROVED AGENCY. An established and recognized agency regularly engaged in conducting tests or furnishing inspection services, when such agency has been approved by the code official code official or authority having jurisdiction.

AUTOMATIC. Self-acting, operating by its own mechanism when actuated by some impersonal influence, as, for example, a change in current strength, pressure, temperature or mechanical configuration (see "Manual").

BELOW-GRADE WALL. See "Wall, below-grade."

BOILER, MODULATING. A boiler that is capable of more than a single firing rate in response to a varying temperature or heating load.

BOILER SYSTEM. One or more boilers, their piping and controls that work together to supply steam or hot water to heat output devices remote from the boiler.

BUBBLE POINT. The refrigerant liquid saturation temperature at a specified pressure.

BUILDING. Any structure used or intended for supporting or sheltering any use or occupancy, including any mechanical systems, service water heating systems and electric power and lighting systems located on the building site and supporting the building.

BUILDING COMMISSIONING. A process that verifies and documents that the selected building systems have been designed, installed, and function according to the owner's project requirements and construction documents, and to minimum code requirements.

BUILDING ENTRANCE. Any door, set of doors, doorway, or other form of portal that is used to gain access to the building from the outside by the public.

BUILDING SITE. A continguous area of land that is under the ownership or control of one entity.

BUILDING THERMAL ENVELOPE. The basement walls, exterior walls, floor, roof and any other building elements that enclose *conditioned space* or provide a boundary between *conditioned space* and exempt or unconditioned space.

C-FACTOR (THERMAL CONDUCTANCE). The coefficient of heat transmission (surface to surface) through a building component or assembly, equal to the time rate of heat flow per unit area and the unit temperature difference between the warm side and cold side surfaces (Btu/h \cdot ft² \cdot °F) [W/(m² \cdot K)].

CIRCULATING HOT WATER SYSTEM. A specifically designed water distribution system where one or more pumps are operated in the service hot water piping to circulate heated water from the water-heating equipment to the fixture supply and back to the water-heating equipment.

CLIMATE ZONE. A geographical region based on climatic criteria as specified in this code.

2015 INTERNATIONAL ENERGY CONSERVATION CODE®

SCOPE AND ADMINISTRATION

C-7

CODE OFFICIAL. The officer or other designated authority charged with the administration and enforcement of this code, or a duly authorized representative. <u>The</u> Vermont Public Service Department is not the code official and shall not be required to conduct inspections of construction or construction documents.

COEFFICENT OF PERFORMANCE (COP) – COOL-

ING. The ratio of the rate of heat input, in consistent units, for a complete refrigerating system or some specific portion of that system under designated operating conditions.

COEFFICIENT OF PERFORMANCE (COP) – HEAT-ING. The ratio of the rate of heat delivered to the rate of energy input, in consistent units, for a complete heat pump system, including the compressor and, if applicable, auxiliary heat, under designated operating conditions.

COMMERCIAL BUILDING. For this code, all buildings that are not included in the definition of "Residential building.", <u>excluding "mobile homes"</u>.

COMMERCIAL BUILDING ENERGY STANDARDS (CBES). The Vermont non-residential Energy Code, based on the 2015 IECC.

COMPUTER ROOM. A room whose primary function is to house equipment for the processing and storage of electronic data and that has a design electronic data equipment power density exceeding 20 watts per square foot of conditioned floor area.

CONDENSING UNIT. A factory-made assembly of refrigeration components designed to compress and liquefy a specific refrigerant. The unit consists of one or more refrigerant compressors, refrigerant condensers (air-cooled, evaporatively cooled, or water-cooled), condenser fans and motors (where used) and factory-supplied accessories.

CONDITIONED FLOOR AREA. The horizontal projection of the floors associated with the *conditioned space*.

CONDITIONED SPACE. An area, room or space that is enclosed within the building thermal envelope and is directly or indirectly heated or cooled. Spaces are indirectly heated or cooled where they communicate through openings with conditioned spaces, where they are separated from conditioned spaces by uninsulated walls, floors or ceilings, or where they contain uninsulated ducts, piping or other sources of heating or cooling.

CONTINUOUS AIR BARRIER. A combination of materials and assemblies that restrict or prevent the passage of air through the building thermal envelope.

CONTINUOUS INSULATION (ci). Insulating material that is continuous across all structural members without thermal bridges other than fasteners and service openings. It is installed on the interior or exterior or is integral to any opaque surface of the building envelope.

CRAWL SPACE WALL. The opaque portion of a wall that encloses a crawl space and is partially or totally below grade.

CURTAIN WALL. Fenestration products used to create an external nonload-bearing wall that is designed to separate the exterior and interior environments.

DAYLIGHT RESPONSIVE CONTROL. A device or system that provides automatic control of electric light levels based on the amount of daylight in a space.

DAYLIGHT ZONE. That portion of a building's interior floor area that is illuminated by natural light.

DEMAND CONTROL VENTILATION (DCV). A ventilation system capability that provides for the automatic reduction of outdoor air intake below design rates when the actual occu- pancy of spaces served by the system is less than design occu- pancy.

DEMAND RECIRCULATION WATER SYSTEM. A water distribution system where pumps prime the service hot water pip- ing with heated water upon demand for hot water.

DUCT. A tube or conduit utilized for conveying air. The air passages of self-contained systems are not to be construed as air ducts.

DUCT SYSTEM. A continuous passageway for the transmis- sion of air that, in addition to ducts, includes duct fittings, dampers, plenums, fans and accessory air-handling equipment and appliances.

[B] DWELLING UNIT. A single unit providing complete independent living facilities for one or more persons, including permanent provisions for living, sleeping, eating, cooking and sanitation.

DYNAMIC GLAZING. Any fenestration product that has the fully reversible ability to change its performance proper- ties, including *U*-factor, solar heat gain coefficient (SHGC), or visible transmittance (VT).

ECONOMIZER, AIR. A duct and damper arrangement and automatic control system that allows a cooling system to sup- ply outside air to reduce or eliminate the need for mechanical cooling during mild or cold weather.

C-8

ECONOMIZER, WATER. A system where the supply air of a cooling system is cooled indirectly with water that is itself cooled by heat or mass transfer to the environment without the use of mechanical cooling.

ENCLOSED SPACE. A volume surrounded by solid surfaces such as walls, floors, roofs, and openable devices such as doors and operable windows.

ENERGY ANALYSIS. A method for estimating the annual energy use of the *proposed design* and *standard reference design* based on estimates of energy use.

ENERGY COST. The total estimated annual cost for purchased energy for the building functions regulated by this code, including applicable demand charges.

[M] ENERGY RECOVERY VENTILATION SYSTEM. Systems that employ air-to-air heat exchangers to recover energy from exhaust air for the purpose of preheating, precooling, humidifying or dehumidifying outdoor ventilation air prior to supplying the air to a space, either directly or as part of an HVAC system.

ENERGY SIMULATION TOOL. An *approved* software program or calculation-based methodology that projects the annual energy use of a building.

ENTRANCE DOOR. Fenestration products used for ingress, egress and access in nonresidential buildings, including, but not fimited to, exterior entrances that utilize latching hardware and automatic closers and contain over 50-percent glass specifically designed to withstand heavy use and possibly abuse.

EQUIPMENT ROOM. A space that contains either electrical equipment, mechanical equipment, machinery, water pumps or hydraulic pumps that are a function of the building's services.

EXTERIOR WALL. Walls including both above-grade walls and basement walls.

FAN BRAKE HORSEPOWER (BHP). The horsepower delivered to the fan's shaft. Brake horsepower does not include the mechanical drive losses (belts, gears, etc.).

FAN EFFICIENCY GRADE (FEG). A numerical rating identifying the fan's aerodynamic ability to convert shaft power, or impeller power in the case of a direct-driven fan, to air power.

FAN SYSTEM BHP. The sum of the fan brake horsepower of all fans that are required to operate at fan system design conditions to supply air from the heating or cooling source to the *conditioned spaces* and return it to the source or exhaust it to the outdoors.

FAN SYSTEM DESIGN CONDITIONS. Operating conditions that can be expected to occur during normal system operation that result in the highest supply fan airflow rate to conditioned spaces served by the system.

FAN SYSTEM MOTOR NAMEPLATE HP. The sum of the motor nameplate horsepower of all fans that are required to operate at design conditions to supply air from the heating or cooling source to the *conditioned spaces* and return it to the source or exhaust it to the outdoors.

FENESTRATION. Products classified as either vertical fenestration or skylights.

Skylight. Glass or other transparent or translucent glazing material installed at a slope of less than 60 degrees (1.05 rad) from horizontal.

Vertical fenestration. Windows (fixed or moveable), opaque doors, glazed doors, glazed block and combination opaque/glazed doors composed of glass or other transparent or translucent glazing materials and installed at a slope of at least 60 degrees (1.05 rad) from horizontal.

FENESTRATION PRODUCT, FIELD-FABRICATED.

A fenestration product whose frame is made at the construction site of standard dimensional lumber or other materials that were not previously cut, or otherwise formed with the specific intention of being used to fabricate a fenestration product or exterior door. Field fabricated does not include site-built fenestration.

FENESTRATION PRODUCT, SITE-BUILT. A fenestration designed to be made up of field-glazed or field-assembled units using specific factory cut or otherwise factoryformed framing and glazing units. Examples of site-built fenestration include storefront systems, curtain walls, and atrium roof systems.

F-F ACTOR. The perimeter heat loss factor for slab-ongrade floors (Btu/h \cdot ft \cdot °F) [W/(m \cdot K)].

FLOOR AREA, NET. The actual occupied area not including unoccupied accessory areas such as corridors, stairways, toilet rooms, mechanical rooms and closets. **FURNACE DUCT.** A furnace normally installed in distribution ducts of air-conditioning systems to supply warm air for heating and which depends on a blower not furnished as part of the duct furnace for air circulation.

FURNACE, WARM AIR. A self-contained, indirect-fired or electrically heated furnace that supplies heated air through ducts to spaces that require it.

GROSS AREA OF EXTERIOR WALLS. The normal projection of all exterior walls, including the area of all windows and doors installed therein (see "Exterior wall").

GENERAL LIGHTING. Lighting that provides a substantially uniform level of illumination throughout an area. General lighting shall not include decorative lighting or lighting that provides a dissimilar level of illumination to serve a specialized application or feature within such area.

GENERAL PURPOSE ELECTRIC MOTOR (SUBTYPE I). A motor that is designed in standard ratings with either of the following:

 Standard operating characteristics and standard mechanical construction for use under usual service conditions, such as those specified in NEMA MG1, paragraph 14.02, "Usual Service Conditions," and without restriction to a particular application or type of application.

 Standard operating characteristics or standard mechanical construction for use under unusual service conditions, such as those specified in NEMA MG1, paragraph 14.03, "Unusual Service Conditions," or for a particular type of application, and that can be used in most general purpose applications.

General purpose electric motors (Subtype I) are constructed in NEMA T-frame sizes or IEC metric equivalent, starting at 143T.

GENERAL PURPOSE ELECTRIC MOTOR (SUBTYPE II). A motor incorporating the design elements of a general purpose electric motor (Subtype I) that is configured as one of the following:

- 1. A U-frame motor.
- 2. A Design C motor.
- 3. A close-coupled pump motor.
- 4. A footless motor.
- 5. A vertical, solid-shaft, normal-thrust motor (as tested in a horizontal configuration).
- 6. An 8-pole motor (900 rpm).
- 7. A polyphase motor with voltage of not more than 600 volts (other than 230 or 460 volts).

GREENHOUSE. A structure or a thermally isolated area of a building that maintains a specialized sunlit environment exclusively used for, and essential to, the cultivation, protection or maintenance of plants.

HEAT TRAP. An arrangement of piping and fittings, such as elbows, or a commercially available heat trap that prevents thermosyphoning of hot water during standby periods.

HEATED SLAB. Slab-on-grade construction in which the heating elements, hydronic tubing, or hot air distribution sys-

DEFINITIONS

tem is in contact with, or placed within or under, the slab.

HIGH SPEED DOOR. A nonswinging door used primarily to facilitate vehicular access or material transportation, with a minimum opening rate of 32 inches

 $(813\ mm)$ per second, a minimum closing rate of 24 inches (610 mm) per second and that includes an automatic-closing device.

2015 INTERNATIONAL ENERGY CONSERVATION CODE®

C-9

HISTORIC BUILDING. Any building or structure that is one or more of the following:

- Listed, or certified as eligible for listing by the State Historic Preservation Officer or the Keeper of the National Register of Historic Places, in the National Register of Historic Places.
- 2. Designated as historic under an applicable state or local law.
- Certified as a contributing resource within a National Register-listed, state-designated or locally designated historic district.

HUMIDISTAT. A regulatory device, actuated by changes in humidity, used for automatic control of relative humidity.

INFILTRATION. The uncontrolled inward air leakage into a building caused by the pressure effects of wind or the effect of

differences in the indoor and outdoor air density or both. **INTEGRATED PART LOAD VALUE (IPLV).** A singlenumber figure of merit based on part-load EER, COP or kW/ton expressing part-load efficiency for air-conditioning and heat pump equipment on the basis of weighted operation at various load capacities for equipment.

LABELED. Equipment, materials or products to which have been affixed a label, seal, symbol or other identifying mark of a nationally recognized testing laboratory, inspection agency or other organization concerned with product evaluation that maintains periodic inspection of the production of the above-labeled items and whose labeling indicates either that the equipment, material or product meets identified standards or has been tested and found suitable for a specified purpose.

LEVEL 1 ELECTRIC VEHICLE CHARGING STATION. Level 1 charging uses a standard 120V outlet and takes 11 to 20 hours to charge a depleted EV.

LEVEL 2 ELECTRIC VEHICLE CHARGING STATION. Level 2 uses a 240 volt AC charging for faster charging than Level 1.

LINER SYSTEM (Ls). A system that includes the following:

- 1. A continuous vapor barrier liner membrane that is installed below the purlins and that is uninterrupted by framing members.
- 2. An uncompressed, unfaced insulation resting on top of the liner membrane and located between the purlins.

For multilayer installations, the last rated *R-value* of insulation is for unfaced insulation draped over purlins and then compressed when the metal roof panels are attached.

LISTED. Equipment, materials, products or services included in a list published by an organization acceptable to the *code official_code_official_or_authority_having_jurisdiction* and concerned with evaluation of products or services that maintains periodic inspection of production of *listed* equipment or materials or periodic evaluation of services and whose listing states either that the equipment, material, product or service meets identified standards or has been tested and found suitable for a specified purpose.

LOW-SLOPED ROOF. A roof having a slope less than 2 units vertical in 12 units horizontal.

LOW-VOLTAGE DISTRIBUTION

DRY-TYPE

TRANSFORMER. A transformer that is air-cooled, does not use oil as a coolant, has an input voltage less than or equal to 600 volts and is rated for operation at a frequency of 60 hertz.

LOW-VOLTAGE LIGHTING. Lighting equipment powered through a transformer such as a cable conductor, a rail conductor and track lighting.

MANUAL. Capable of being operated by personal intervention (see "Automatic").

NAMEPLATE HORSEPOWER. The nominal motor horsepower rating stamped on the motor nameplate.

NONSTANDARD PART LOAD VALUE (NPLV). A single-number part-load efficiency figure of merit calculated and referenced to conditions other than IPLV conditions, for units that are not designed to operate at ARI standard rating condi- tions.

OCCUPANCY CLASSIFICATIONS. Residential Group R is the occupancy group used for buildings that include sleeping rooms and are not institutional and are not generally regulated by the International Residential Code. The IRC typically regulates single family homes and duplexes, any structure with more than two units is in the IBC. There are four different occupancy groups within R.

The first occupancy group is **R-1**. This group is for transient uses like hotels, motels and boarding houses.

The next group is **R-2**. R-2 is the group we see most often and it for residences where **occupants are primarily permanent**. This includes apartments, dormitories, fraternities and sororities. It also, includes vacation timeshares (again with more than two units) and convents and monasteries. Congregate living facilities with 16 or fewer occupants go into group R-3.

R-3 is <u>something of a catchall group</u> for permanent occupancies that aren't R-1, R-2, R-4-or J. These include buildings that are in the IBC but have no more than two units. Adult facilities and child care facilities that provide accomodation for five or less people less than 24 hours a day are R-3. Where these facilities are in a single family home they must comply with the IRC.

R-4 is for residential care/assisted living facilities

including more than five and not more than 16 occupants . Generally it is very similar to R 3's requirements.

OCCUPANT SENSOR CONTROL. An automatic control device or system that detects the presence or absence of people within an area and causes lighting, equipment or appliances to be regulated accordingly.

ON-SITE RENEWABLE ENERGY. Energy derived from solar radiation, wind, waves, tides, landfill gas, biomass or the internal heat of the earth. The energy system providing on-site renewable energy shall be located on the project site.

OPAQUE DOOR. A door that is not less than 50-percent opaque in surface area.

POWERED ROOF/WALL VENTILATORS. A fan consisting of a centrifugal or axial impeller with an integral driver in a weather-resistant housing and with a base designed to fit, usually by means of a curb, over a wall or roof opening.

PROPOSED DESIGN. A description of the proposed building used to estimate annual energy use for determining compliance based on total building performance.

RADIANT HEATING SYSTEM. A heating system that transfers heat to objects and surfaces within a conditioned space, primarily by infrared radiation.

READILY ACCESSIBLE. Capable of being reached quickly for operation, renewal or inspection without requiring those to whom ready access is requisite to climb over or remove obstacles or to resort to portable ladders or access equipment (see "Accessible").

REFRIGERANT DEW POINT. The refrigerant vapor saturation temperature at a specified pressure.

REFRIGERATED WAREHOUSE COOLER. An enclosed storage space capable of being refrigerated to temperatures above $32^{\circ}F(0^{\circ}C)$, that can be walked into and has a total chilled storage area of not less than 3,000 square feet (279 m²).

REFRIGERATED WAREHOUSE FREEZER. An enclosed storage space capable of being refrigerated to temperatures at or below $32^{\circ}F$ (0°C), that can be walked into and has a total chilled storage area of not less than 3,000 square feet (279 m²).

REFRIGERATION SYSTEM, LOW TEMPERATURE. Systems for maintaining food product in a frozen state in refrigeration applications.

REFRIGERATION SYSTEM, MEDIUM TEMPERA-TURE. Systems for maintaining food product above freezing in refrigeration applications.

REGISTERED DESIGN PROFESSIONAL. An individual who is registered or licensed to practice their respective design profession as defined by the statutory requirements of the professional registration laws of the state or jurisdiction in which the project is to be constructed.

REPAIR. The reconstruction or renewal of any part of an existing building for the purpose of its maintenance or to correct damage.

REROOFING. The process of recovering or replacing an existing roof covering. See "Roof recover" and "Roof replacement."

RESIDENTIAL BUILDING. For this code, includes detached one- and two-family dwellings and multiple single-family dwellings (townhouses) as well as Group R-2, R-3 and R-4 (See Occupancy Classifications) buildings three stories or less in height above grade plane.

RESIDENTIAL BUILDING ENERGY STANDARDS (RBES). The Vermont Residential Energy Code, based on the IECC.

ROOF ASSEMBLY. A system designed to provide weather protection and resistance to design loads. The system consists of a roof covering and roof deck or a single component serving as both the roof covering and the roof deck. A roof assembly includes the roof covering, underlayment, roof deck, insulation, vapor retarder and interior finish.

ROOF RECOVER. The process of installing an additional roof covering over an existing roof covering without removing the existing roof covering.

ROOF REPAIR. Reconstruction or renewal of any part of an existing roof for the purpose of its maintenance.

ROOF REPLACMENT. The process of removing the existing roof covering, repairing any damaged substrate and installing a new roof covering.

ROOFTOP MONITOR. A raised section of a roof containing vertical fenestration along one or more sides.

*R***-VALUE (THERMAL RESISTANCE).** The inverse of the time rate of heat flow through a body from one of its bounding surfaces to the other surface for a unit temperature difference between the two surfaces, under steady state conditions, per unit area $(h \cdot ft^2 \cdot {}^\circ F/Btu)$ [(m² · K)/W].

SATURATED CONDENSING TEMPERATURE. The saturation temperature corresponding to the measured refrigerant pressure at the condenser inlet for single component and azeotropic refrigerants, and the arithmetic average of the dew point and *bubble point* temperatures corresponding to the refrigerant pressure at the condenser entrance for zeotropic refrigerants.

SCREW LAMP HOLDERS. A lamp base that requires a screw-in-type lamp, such as a compact-fluorescent, incandescent or tungsten-halogen bulb.

SERVICE WATER HEATING. Supply of hot water for purposes other than comfort heating.

[B] SLEEPING UNIT. A room or space in which people sleep, which can also include permanent provisions for living, eating, and either sanitation or kitchen facilities but not both. Such rooms and spaces that are also part of a dwelling unit are not *sleeping units*.

SMALL ELECTRIC MOTOR. A general purpose, alternating current, single speed induction motor.

SOLAR HEAT GAIN COEFFICIENT (SHGC). The ratio of the solar heat gain entering the space through the fenestration assembly to the incident solar radiation. Solar heat gain includes directly transmitted solar heat and absorbed solar radiation which is then reradiated, conducted or convected into the space.

STANDARD REFERENCE DESIGN. A version of the *pro- posed design* that meets the minimum requirements of this code and is used to determine the maximum annual energy use requirement for compliance based on total building perfor- mance.

STOREFRONT. A nonresidential system of doors and win- dows mulled as a composite fenestration structure that has been designed to resist heavy use. *Storefront* systems include, but are not limited to, exterior fenestration systems that span from the floor level or above to the ceiling of the same story on commer- cial buildings, with or without mulled windows and doors.

THERMOSTAT. An automatic control device used to main- tain temperature at a fixed or adjustable set point.

TIME SWITCH CONTROL. An automatic control device or system that controls lighting or other loads, including switching off, based on time schedules.

U-FACTOR (THERMAL TRANSMITTANCE). The coefficient of heat transmission (air to air) through a building compo- nent or assembly, equal to the time rate of heat flow per unit area and unit temperature difference between the warm side and cold side air films (Btu/h \cdot ft² \cdot °F) [W/(m² \cdot K)].

2015 INTERNATIONAL ENERGY CONSERVATION CODE®

VARIABLE REFRIGERANT FLOW SYSTEM. An engineered direct-expansion (DX) refrigerant system that incorporates a common condensing unit, at least one variablecapacity compressor, a distributed refrigerant piping network to multiple indoor fan heating and cooling units each capable of individual zone temperature control, through integral zone temperature control devices and a common communications network. Variable refrigerant flow utilizes three or more steps of control on common interconnecting piping.

[M] VENTILATION. The natural or mechanical process of supplying conditioned or unconditioned air to, or removing such air from, any space.

[M] VENTILATION AIR. That portion of supply air that comes from outside (outdoors) plus any recirculated air that has been treated to maintain the desired quality of air within a designated space.

VISIBLE TRANSMITTANCE [VT]. The ratio of visible light entering the space through the fenestration product assembly to the incident visible light. Visible transmittance includes the effects of glazing material and frame and is expressed as a number between 0 and 1.

WALK-IN COOLER. An enclosed storage space capable of being refrigerated to temperatures above 32° F (0°C) and less than 55° F (12.8°C) that can be walked into, has a ceiling height of not less than 7 feet (2134 mm) and has a total chilled storage area of less than 3,000 square feet (279 m²).

WALK-IN FREEZER. An enclosed storage space capable of being refrigerated to temperatures at or below 32°F (0°C) that can be walked into, has a ceiling height of not less than 7

C-11

feet (2134 mm) and has a total chilled storage area of less than 3,000 square feet (279 m^2).

WALL, ABOVE-GRADE. A wall associated with the *building thermal envelope* that is more than 15 percent above grade and is on the exterior of the building or any wall that is associated with the *building thermal envelope* that is not on the exterior of the building.

WALL, BELOW-GRADE. A wall associated with the basement or first story of the building that is part of the *building thermal envelope*, is not less than 85 percent below grade and is on the exterior of the building.

WATER HEATER. Any heating appliance or equipment that heats potable water and supplies such water to the potable hot water distribution system.

ZONE. A space or group of spaces within a building with heating or cooling requirements that are sufficiently similar so that desired conditions can be maintained throughout using a single controlling device.

CHAPTER 3 [CE]

GENERAL REQUIREMENTS

SECTION C301 CLIMATE ZONES

C301.1 General. *Climate zones* from Figure C301.1 or Table C301.1 shall be used in determining the applicable requirements from Chapter 4.-Locations not in Table C301.1 (outside the United States) shall be assigned a climate zone based on Section C301.3.

C301.2 Warm humid counties. Warm humid counties are identified in Table C301.1 by an asterisk.

C301.3 International climate zones. The *climate zone* for any location outside the United States shall be determined by applying Table C301.3(1) and then Table C301.3(2).

C301.4 Tropical climate zone. The tropical climate zone shall be defined as:

- 1. Hawaii, Puerto Rico, Guam, American Samoa, U.S. Virgin Islands, Commonwealth of Northern Mariana Islands; and
- Islands in the area between the Tropic of Cancer and the Tropic of Capricorn.

TABLE C301.3(1)-INTERNATIONAL CLIMATE ZONE DEFINITIONS MAJOR CLIMATE TYPE DEFINITIONS le all f 1. Mean temperature of coldest month between -3°C (27°F) and 18°C (65°F). 2. Warmest month me $an < 22^{\circ}C (72^{\circ}F).$ 3. At least four months with mean temperatures over 10°C (50°F). 4. Dry season in summer. The month with the heaviest precipitation in the cold season has at least three times as much precipitation as the month with the least precipitation in the rest of the year. The cold season is October through March in the Northern Hemisphere and April through September in the Southern Hemisphere. Dry (B) Definition Locations meeting the following criteria: Not marine and $P_{in} < 0.44 \times (TF - 19.5)$ [$P_{em} < 2.0 \times (TC + 7)$ in SI units] where: ₽. al precipitation in inches (cm) Annual mean temperature in °F (°Ć) τ Moist (A) Definition Locations that are not marine and not dry. Warm humid Definition - Moist (A) locations where either of the following wet-bulb temperature conditions shall occur during the warmest six consecutive months of the year: 1. 67°F (19.4°C) or higher for 3,000 or more hour or 2. 73°F (22.8°C) or higher for 1,500 or more h For SI: °C = [(°F) 32]/1.8, 1 inch = 2.54 em. 2015 INTERNATIONAL ENERGY CONSERVATION CODE® C-27

CLIMATE ZONE MAP AND ALL CLIMATE ZONE STATE TABLES DELETED (pages C-14 to C-27).

ZONE	THERMAL CRITERIA								
NUMBER	IP Units	SI Units							
+	9000 < CDD50°F	5000 < CDD10°C							
2	6300 < CDD50°F ≤ 9000	3500 < CDD10°C ≤ 5000							
3A and 3B	$4500 < CDD50^{\circ}F \le 6300 \text{ AND HDD65}^{\circ}F \le 5400$	2500 < CDD10°C ≤ 3500 AND HDD18°C ≤ 3							
4A and 4B	CDD50°F ≤ 4500 AND HDD65°F ≤ 5400	CDD10°C ≤ 2500 AND HDD18°C ≤ 3000							
3C	<u>HDD65°F ≤ 3600</u>	<u>HDD18°C≤2000</u>							
4C	3600 < HDD65°F ≤ 5400	2000 < HDD18°C ≤ 3000							
5	5400 < HDD65°F ≤ 7200	3000 < HDD18°C ≤ 4000							
6	7200 < HDD65°F ≤ 9000	4 000 < HDD18°C ≤ 5000							
7	9000 < HDD65°F ≤ 12600	5000 < HDD18°C ≤ 7000							
8	12600 < HDD65°F	7000 < HDD18°C							

For SI: $^{\circ}C = [(^{\circ}F) - 32]/1.8$.

SECTION C302 DESIGN CONDITIONS

C302.1 Interior design conditions. The interior design temperatures used for heating and cooling load calculations shall be a maximum of $72^{\circ}F$ (22°C) for heating and minimum of $75^{\circ}F$ (24°C) for cooling.

- 302.2 Climactic data.
- Heating Design Temperature: -11°F (ASHRAE/IESNA 90.1-2007 Table D-1, 99.6%)
- Cooling Design Temperature Dry-Bulb: 84°F (ASHRAE/IESNA 90.1-2007 Table D-1, 1%)
- Cooling Design Temperature Wet-Bulb: 69°F (ASHRAE/IESNA 90.1-2007 Table D-1, 1%)
- Heating Degree Days: 7,771
- (ASHRAE/IESNA 90.1-2007 Table D-1, 65° Base) • Cooling Degree Days: 2,228
- (ASHRAE/IESNA 90.1-2007 Table D-1, 50° Base) Adjustments may be made only in the following cases:
- 1. Winter heating design temperatures for projects either:
- i. Located at an elevation of 1,500 feet or higher or ii. located in Caledonia, Essex or Orleans counties.
- iii. Adjustments shall be made as listed in the National Climate Data Center for the specific weather station: http://cdo.ncdc.noaa.gov/climatenormals/clim81 supp/CLIM81_Sup_02.pdf.
- As approved by the *code official* code official or authority having jurisdiction or other authority hav- ing jurisdiction.

SECTION C303 MATERIALS, SYSTEMS AND EQUIPMENT

C303.1 Identification. Materials, systems and equipment shall be identified in a manner that will allow a determination of compliance with the applicable provisions of this code.

C303.1.1 Building thermal envelope insulation. An *R*-value identification mark shall be applied by the manufacturer to each piece of *building thermal envelope* insulation 12 inches (305 mm) or greater in width. Alternately, the

insulation installers shall provide a certification listing the type, manufacturer and *R*-value of insulation installed in each element of the *building thermal envelope*. For blown or sprayed insulation (fiberglass and cellulose), the initial installed thickness, settled thickness, settled *R*-value, installed density, coverage area and number of bags installed shall be *listed* on the certification. For sprayed polyurethane foam (SPF) insulation, the installed thick- ness of the areas covered and *R*-value of installed thick- ness shall be *listed* on the certification. For insulated siding, the *R*value shall be labeled on the product's pack- age and shall be *listed* on the certification. The insulation installer shall sign, date and post the certification in a con- spicuous location on the job site.

C303.1.1.1 Blown or sprayed roof/ceiling insulation. The thickness of blown-in or sprayed roof/ceiling insu- lation (fiberglass or cellulose) shall be written in inches (mm) on markers that are installed at least one for every 300 square feet (28 m²) throughout the attic space. The markers shall be affixed to the trusses or joists and marked with the minimum initial installed thickness with numbers not less than 1 inch (25 mm) in height.

GENERAL REQUIREMENTS

Each marker shall face the attic access opening. Spray polyurethane foam thickness and installed *R*-value shall be *listed* on certification provided by the insulation installer.

C303.1.2 Insulation mark installation. Insulating materials shall be installed such that the manufacturer's *R*-value mark is readily observable upon inspection.

C303.1.3 Fenestration product rating. *U*-factors of fenestration products (windows, doors and skylights) shall be determined in accordance with NFRC 100.

Exception: Where required, garage door *U*-factors shall be determined in accordance with either NFRC 100 or ANSI/DASMA 105.

U-factors shall be determined by an accredited, inde-

C-28 CODE® pendent laboratory, and *labeled* and certified by the manufacturer.

Products lacking such a *labeled U*-factor shall be assigned a default *U*-factor from Table C303.1.3(1) or C303.1.3(2). The solar heat gain coefficient (SHGC) and *visible transmittance* (VT) of glazed fenestration products (windows, glazed doors and skylights) shall be determined in accordance with NFRC 200 by an accredited, independent laboratory, and *labeled* and certified by the manufacturer. Products lacking such a *labeled* SHGC or VT shall be assigned a default SHGC or VT from Table C303.1.3(3).

TABLE C303.1.3(1) DEFAULT GLAZED FENESTRATION U-FACTORS

DEI AGET GEALEE							
FRAME TYPE	SINGLE	DOUBLE	SKYLIGHT				
	PANE	PANE	Single	Double			
Metal	1.20	0.80	2.00	1.30			
Metal with Thermal Break	NATIONA	0.65	I.90	1.10			
Nonmetal or Metal Clad	0.95	0.55	1.75	1.05			
Glazed Block	0.60						

GENERAL REQUIREMENTS

TABLE C303.1.3(2)

DOOR TYPE	U-FACTOR
Uninsulated Metal	1.20
Insulated Metal	0.60
Wood	0.50
Insulated, nonmetal edge, max 45% glazing, any glazing double pane	0.35

TABLE C303.1.3(3) DEFAULT GLAZED FENESTRATION SHGC AND VT

	SINGLE	GLAZED	DOUBLE	GLAZED	GLAZED
	Clear	Tinted	Clear	Tinted	BLOCK
SHGC	0.8	0.7	0.7	0.6	0.6
VT	0.6	0.3	0.6	0.3	0.6

C303.1.4 Insulation product rating. The thermal resistance (*R*-value) of insulation shall be determined in accordance with the U.S. Federal Trade Commission *R*-value rule (CFR Title 16, Part 460) in units of $h \cdot ft^2 \cdot °F/Btu$ at a mean temperature of 75°F (24°C).

C303.1.4.1 Insulated siding. The thermal resistance (R-value) of insulated siding shall be determined in accordance with ASTM C1363. Installation for testing shall be in accordance with the manufacturer's instructions.

C303.2 Installation. Materials, systems and equipment shall be installed in accordance with the manufacturer's instructions and the *International Building Code*.

C303.2.1 Protection of exposed foundation insulation. Insulation applied to the exterior of basement walls, crawl-space walls and the perimeter of slab-on-grade floors shall have a rigid, opaque and weather-resistant protective covering to prevent the degradation of the insulation's thermal performance. The protective covering shall cover the exposed exterior insulation and extend not less than 6 inches (153 mm) below grade.

C303.3 Maintenance information. Maintenance instructions shall be furnished for equipment and systems that require preventive maintenance. Required regular maintenance actions shall be clearly stated and incorporated on a readily accessible label. The label shall include the title or publication number for the operation and maintenance manual for that particular model and type of product.

GENERAL REQUIREMENTS

CHAPTER 4 [CE]

COMMERCIAL ENERGY EFFICIENCY

SECTION C401 GENERAL

C401.1 Scope. The provisions in this chapter are applicable to commercial *buildings* and their *building sites*.

C401.2 Application. Commercial buildings shall comply with one of the following:

- 1. The requirements of ANSI/ASHRAE/IESNA 90.
- 2. The requirements of Sections C402 through C405. In addition, commercial buildings shall comply with Section C406 and tenant spaces shall comply with Section C406.1.1.
- The requirements of Sections C402.5, C403.2, C404, C405.2, C405.3, C405.4, C405.6 and C407. The building energy cost shall be equal to or less than 85 percent of the standard reference design building.

C401.2.1 Application to replacement fenestration products. Where some or all of an existing *fenestration* unit is replaced with a new *fenestration* product, including sash and glazing, the replacement *fenestration* unit shall meet the

and grazing, the replacement *ferestration* unit shall need the applicable requirements for *U-factor* and *SHGC* in Table **C402.3**. **Exception:** An area-weighted average of the *U-factor*

of replacement fenestration products being installed in the building for each fenestration product category listed in Table C402.3 shall be permitted to satisfy the *U*-factor requirements for each fenestration product category listed in Table C402.3. Individual fenestration products from different product categories listed in Table C402.3 shall not be combined in calculating the area-weighted average *U*-factor.

C401.3 Certificate of compliance. 30 V.S.A. \$53 requires certification that both the design and the construction of a commercial building is in compliance with the CBES.

Certification shall be issued by a completed and signed certificate permanently affixed to the outside of the heating or cooling equipment, to the electrical service panel and located inside the building, or in a visible location in the immediate vicinity of one of these three areas. Copies of the signed certification documents shall be sent to the local town clerk and to the Vermont Department of Public Service.

SECTION C402 BUILDING ENVELOPE REQUIREMENTS

C402.1 General (Prescriptive). Building thermal envelope assemblies for buildings that are intended to comply with the code on a prescriptive basis, in accordance with the compliance path described in Item 2 of Section C401.2, shall comply with the following:

1. The opaque portions of the building thermal envelope shall comply with the specific insulation requirements of Section C402.2 and the thermal requirements of eithe the *R*-value-based method of Section C402.1.3; the *U*and *F*-factor-based method of Section C402.1.4; or the component performance alternative of Section 402.1.5.

2. Roof solar reflectance and thermal emittance s comply with Section C402.3.

3.2. Fenestration in building envelope assemblies shall comply with Section C402.4.
 4.3. Air leakage of building envelope assemblies shall

com- ply with Section C402.5.

Comment [NAV5]: For final VT CBES, add in "applicable provisions" that apply to users of 90.1

-11

Alternatively, where buildings have a vertical fenestration area or skylight area exceeding that allowed in Section C402.4, the building and building thermal envelope shall com- ply with Section C401.2, Item 1 or Section C401.2, Item 3.

Walk-in coolers, walk-in freezers, refrigerated warehouse coolers and refrigerated warehouse freezers shall comply with Section C403.2.15 or C403.2.16.

 $\begin{array}{cccc} C402.1.1 & Low-energy & buildings. & The & following & low-\\ \underline{**} \end{array}$

energy buildings, or portions thereof separated from the remainder of the building by building thermal envelope assemblies complying with this section, shall be exempt from the building thermal envelope provisions of Section C402.

- I. Those with a peak design rate of energy usage less than

 3.4 Btu/h ft² (10.7 W/m²) or 1.0 watt per square

 foot
 (10.7 W/m²) of floor area for space

 conditioning purposes.
- 2. Those that do not contain conditioned space.
- 3. Greenhouses.

C402.1.2 Equipment buildings. Buildings that comply with the following shall be exempt from the building ther- mal envelope provisions of this code:

- Are separate buildings with floor area not more than 500 square feet (50 m²).
- 2. Are intended to house electronic equipment with

2015 INTERNATIONAL ENERGY CONSERVATION CODE®

installed equipment power totaling not less than 7 watts per square foot (75 W/m²) and not intended for human occupancy.

 Have a heating system capacity not greater than (17,000 Btu/hr) (5 kW) and a heating thermostat set point that is restricted to not more than 50°F (10°C).

4. Have an average wall and roof U-factor less than 5.<u>4. 0.200 in *Climate Zones* 1 through 5 and less than</u>

0.120<u>.</u> in *Climate Zones* 6 through 8.

6. Comply with the roof solar reflectance and thermal emittance provisions for *Climate Zone* 1.

C402.1.3 Insulation component *R*-value-based method. *Building thermal envelope* opaque assemblies shall meet the requirements of Sections C402.2 and C402.4 based on the *climate zone* specified in Chapter 3. For opaque portions of the *building thermal envelope* intended to comply on an insulation component *R*-value basis, the *R*-values for insulation in framing cavities, where required, and for continuous insulation, where required, shall be not less than that specified in Table C402.1.3, based on the *climate zone* specified in Chapter 3. Commercial buildings or portions of commercial buildings enclosing Group R occupancies shall use the *R*-values from the "Group R" column of Table C402.1.3. Commercial buildings or portions of commercial buildings enclosing occupancies other than Group R shall use the *R*-values from the "All other" column of Table C402.1.3. The thermal resis-

C-31

tance or *R*-value of the insulating material installed continuously within or on the below-grade exterior walls of the building envelope required in accordance with Table C402.1.-3 shall extend to a depth of not less than 10 feet (3048 mm) below the outside finished ground level, or to the level of the lowest floor of the conditioned space enclosed by the below grade wall, whichever is less. Opaque swinging doors shall comply with Table C402.1.-4 and opaque roll up or sliding doors shall comply with Table C402.1.-3.

C402.1.4 Assembly U-factor, C-factor or F-factor-based method. Building thermal envelope opaque assemblies intended to comply on an assembly U-, C- or F-factor basis shall have a U-, C- or F-factor not greater than that specified in Table C402.1.4. Commercial buildings or portions of commercial buildings enclosing Group R occupancies shall use the U-, C- or F-factor from the "Group R" column of Table C402.1.4. Commercial buildings or portions of commercial buildings enclosing occupancies other than Group R shall use the U-, C- or F-factor from the "All other" column of Table C402.1.4. The C-factor for the below-grade exterior walls of the building envelope, as required in accordance with Table C402.1.4, shall extend to a depth of 10 feet (3048 mm) below the outside finished ground level, or to the level of the lowest floor, whichever is less. Opaque sy doors shall comply with Table C402.1.4 and opaque roll up or sliding doors shall comply with Table C402.1.3.

C402.1.4.1 Thermal resistance of cold-formed steel walls. *U*-factors of walls with cold-formed steel studs shall be permitted to be determined in accordance with Equation 4-1:

(Equation 4-1)

E

|--|

where:

 R_s = The cumulative *R*-value of the wall components along the path of heat transfer, excluding the cavity insulation and steel studs.

ER = The effective *R*-value of the cavity insulation with steel studs.

TABLE C402.1.4.1 EFFECTIVE R-VALUES FOR STEEL STUD WALL ASSEMBLIES NOMINAL SPACING CAVITY CORRECTION EFFECTIVE

STUD DEPTH (inches)	OF FRAMING (inches)	CAVITY <i>R</i> -VALUE (insulation)	CORRECTION FACTOR (F _c)	EFFECTIVE <i>R</i> -VALUE (ER) (Cavity <i>R</i> -Value × <i>F_c</i>)
$3^{1}/_{2}$	16	13	0.46	5.98
5/2	10	15	0.43	6.45
3 ¹ / ₂	24	13	0.55	7.15
572	24	15	0.52	7.80
6	16	19	0.37	7.03
0	10	21	0.35	7.35
6	24	19	0.45	8.55
0	24	21	0.43	9.03
8	16	25	0.31	7.75
0	24	25	0.38	9.50

C402.1.5 Component performance alternative. Building envelope values and fenestration areas determined in accordance with Equation 4-2 shall be permitted in lieu of compliance with the *U*-, *F*- and *C*-factors in Tables C402.1.3 and C402.1.4 and the maximum allowable fenestration areas in Section C402.4.1.

(Equation 4-2)

$A + B + C + D + E \le Zero$

where:

A = Sum of the (UA Dif) values for each distinct assembly type of the building thermal envelope, other than slabs on grade and below-grade walls.
 UA Dif = UA Proposed - UA Table.

- UA Proposed = Proposed U-value Area.
- UA Table = (U-factor from Table C402.1.3 or Table C402.1.4) • Area.
- **B** = Sum of the (FL Dif) values for each distinct slab-ongrade perimeter condition of the building thermal envelope.

FL Dif = FL Proposed - FL Table.

 FL Proposed = Proposed F-value • Perimeter length.

 FL Table = (F-factor specified in Table C402.1.4)

 • Perimeter length.

C = Sum of the (CA Dif) values for each distinct belowgrade wall assembly type of the building thermal envelope.

CA Dif = CA Proposed - CA Table

- CA Proposed = Proposed C-value Area. CA Table = (Maximum allowable C-factor
 - specified in Table C402.1.4) Area.

Where the proposed vertical glazing area is less than or equal to the maximum vertical glazing area allowed by Section C402.4.1, the value of D (Excess Vertical Glazing Value) shall be zero. Otherwise:

=	$(DA \cdot UV) - ($	(D/	A • U _{Wall}), but not less than zero.
	DA	=	(Proposed Vertical Glazing Area) -
			(Vertical Glazing Area allowed by Section C402.4.1).
	UA Wall	=	Sum of the (UA Proposed) values for
			each opaque assembly of the exterior wall.
	$\mathbf{U}_{\mathrm{Wall}}$	=	Area-weighted average U-value of all
			above-grade wall assemblies.
	UAV	=	Sum of the (UA Proposed) values for
			each vertical glazing assembly.
	UV	=	UAV/total vertical glazing area.

Where the proposed skylight area is less than or equal to the skylight area allowed by Section C402.4.1, the value of E (Excess Skylight Value) shall be zero. Otherwise:

=	$(EA \cdot US) - (EA)$	A • U _{Roof}), but not less than zero.
	EA =	(Proposed Skylight Area) -
		(Allowable Skylight Area as specified
		in Section C402.4.1).
	U _{Roof} =	Area-weighted average U-value of all
		roof assemblies.
	UAS =	Sum of the (UA Proposed) values for
		each skylight assembly.
	US =	UAS/total skylight area.

	4	1	-	2		3	4 EXCEPT	4 EXCEPT MARINE		ARINE 4	ENTS, R-VALUE MET 6		7		8	
CLIMATE ZONE	All other	Group R	All other	Group R	All other	Group R	All other	Group R	All other	Group R	All other	Group R	All other	Group R	All other	Group F
							Re	ofs								
Insulation entirely above roof deck	R-20ci	R-25ci	R-25ci	R-25ci	R-25ci	R-25ci	R-30ci	R-30ci	R-30ci	R-30ci	R-30ci	R-30ci	R-35ci	R-35ci	R-35ci	R-35ci
Metal buildings ^{a, b}	R-19+ R-11 LS	R-19+ R-11 LS	R-19+ R11 LS	R-19+ R-11 LS	R-19+ R-11 LS	R-19+ R-11 LS	R-19 + R-11 LS	R-19+ R-11 LS	R-19+ R-11 LS	R-19+ R-11 LS	R-25 + R-11 LS	R-25+ R-11 LS	R-30 + R-11 LS	R-30 + R-11 LS	R-30+- R-11 LS	R-30+ R-11 LS
Attic and other	R-38	R-38	R-38	R-38	R-38	R-38	R-38	R-38	R-38	R-49	R-49	R-49	R-49	R-49	R-49	R-49
Walls, above grade																
Mass	R-5.7ci ^e	R-5.7ci ^e	R-5.7ci*	R-7.6ci	R-7.6ci	R-9.5ci	R-9.5ci	R-11.4ci	R-11.4ci	R-13.3ci	R-13.3ci	R-15.2ci	R-15.2ci	R-15.2ci	R-25ci	R-25ci
Metal building	R-13+ R-6.5ci	R-13 + R-6.5ci	R13 + R-6.5ci	R-13+ R-13ci	R-13 ⊢ R-6.5ci	R-13 + R-13ci	R-13 + R-13ci	R-13+ R-13ci	R-13+ R-13ci	R-13 + R-13ci	R-13+ R-13ci	R-13+ R-13ci	R-13+ R-13ci	R-13+ R-19.5ci	R-13 + R-13ci	R-13+ R-19.5c
Metal framed	R-13 + R-5ci	R-13 + R-5ci	R-13 + R-5ci	R-13 + R-7.5ci	R 13 + R 7.5ci	R-13 + R-7.5ci	R-13 ⊢ R-7.5ci	R-13 + R-7.5ci	R-13 + R-7.5ci	R-13 + R-7.5ci	R-13 + R-7.5ci	R-13 + R-7.5ci	R-13 + R-7.5ci	R-13 + R-15.6ci	R-13 ⊢ R-7.5ci	R-13+ R17.5ci
Wood framed and other	R-13 + R-3.8cior - R-20	R-13 + R-3.8cior R-20	R-13 + R-3.8cior - R-20	R-13 + R-3.8cior R-20	R-13 + R-3.8cior - R-20	R-13 + R-3.8cior R-20	R-13+ R-3.8cior R-20	R-13 + R-3.8cior R-20	R-13 + R-3.8ci or R-20	R-13+ R-7.5ci or R-20 + R-3.8ci	R-13 +- R-7.5ci or R-20 + R-3.8ci	R-13 +- R-7.5ci or R-20 + R-3.8ci	R-13 +- R-7.5ci or R-20 + R-3.8ci	R-13 +- R-7.5ci or R-20 + R-3.8ci	R13 +- R-15.6ci or R-20 + R-10ci	R13 + R-15.6ci or R-20 + R-10c
							Walls, be	low grade								
Below-grade wall ^d	NR	NR	NR	NR	NR	NR	R-7.5ci	R-7.5ci	R-7.5ci	R-7.5ci	R-7.5ci	R-7.5ci	R-10ci	R-10ci	R-10ci	R-12.5e
							Fic	oors								
Mass ^e	NR	NR	R-6.3ci	R-8.3ci	R-10ci	R-10ci	R-10ci	R-10.4ci	R-10ci	R-12.5ci	R-12.5ci	R-12.5ci	R-15ci	R-16.7ci	R-15ci	R-16.7c
Joist/framing	NR	NR	R-30	R-30	R-30	R-30	R-30	R-30	R-30	R-30	R-30	R-30 [€]	R-30 [€]	R-30 [£]	R-30 [€]	R-30 [#]
		1						rade floors				1			1	
Unheated slabs	NR	NR	NR	NR	NR	NR	R-10 for 24 ["] below	R-10 for 24 [#] below	R-10 for 24" below	R-10 for 24 ["] below	R-10 for 24" below	R-15 for 24" below	R-15 for 24" below	R-15 for 24" below	R-15 for 24" below	R-20 fo 24" belo
Heated slabs ^f	R-7.5 for 12" below	R-7.5 for 12" below	R-7.5 for 12" below	R-7.5 for 12" below	R-10 for 24" below	R-10 for 24" below	R-15 for 24" below	R-15 for 24" below	R-15 for 36" below	R-15 for 36" below	R-15 for 36" below	R-20 for 48" below	R-20 for 24" below	R-20 for 48" below	R-20 for 48" below	R-20 fo 48" belo
							Opaqu	e doors		•	•					•
Nonswinging	R-4.75	R-4.75	R-4.75	R-4.75	R-4.75	R-4.75	R-4.75	R-4.75	R-4.75	R-4.75	R-4.75	R-4.75	R-4.75	R-4.75	R-4.75	R-4.75

For SI: 1 inch = 25.4 mm, 1 pound per square foot = 4.88 kg/m², 1 pound per cubic foot = 16 kg/m².

ci = Continuous insulation, NR = No requirement, LS = Liner system.

a. Assembly descriptions can be found in ANSI/ASHRAE/IESNA Appendix A

a. Assembly descriptions can be found in A top Astron A Appendix A
 b. Where using *R*-value compliance method, a thermal spacer block shall be provided, otherwise use the *U*-factor compliance method in Table C402.1.4.
 c. R-5.7ci is allowed to be substituted with concrete block walk complying with ASTM C 90, ungrouted or partially grouted at 32 inches or less on center vertically and 48 inches or less on center horizontally, with ungrouted cores filled with materials having a maximum thermal conductivity of 0.44 Btu-in/h f^{ee}F.

d. Where heated slabs are below grade, below-grade walls shall comply with the exterior insulation requirements for heated slabs.

e. "Mass floors" shall include floors weighing not less than:

1. 35 pounds per square foot of floor surface area; or

2. 25 pounds per square foot of floor surface area where the material weight is not more than 120 pounds per cubic foot.

f. Steel floor joist systems shall be insulated to R-38.

COMMERCIAL ENERGY EFFICIENCY

			ORAOU	ETHERM		OPE ASSE		C402.1.4		ENTS ILE		ЕТНОР#+				
CLIMATE ZONE	4	Ļ		2	;		EXCEPT	4		5		6	:	7		8
CEMIATE ZONE	All other	Group R	All other	Group R	All other	Group R	All other	Group R	All other	Group R	All other	Group R	All other	Group R	All other	Group R
							Ro	oofs								
Insulation entirely above roof deck	U-0.048	U-0.039	U-0.039	U-0.039	U-0.039	U-0.039	U-0.032	U-0.032	U-0.032	U-0.032	U-0.032	U-0.032	U-0.028	U-0.028	U-0.028	U-0.028
Metal buildings	U-0.044	U-0.035	U-0.035	U-0.035	U-0.035	U-0.035	U-0.035	U-0.035	U-0.035	U-0.035	U-0.031	U-0.031	U-0.029	U-0.029	U-0.029	U-0.029
Attic and other	U-0.027	U-0.027	U-0.027	U-0.027	U-0.027	U-0.027	U-0.027	U-0.027	U-0.027	U-0.021	U-0.021	U-0.021	U-0.021	U-0.021	U-0.021	U-0.021
	Walls, above grade															
Mass	U-0.151	U-0.151	U-0.151	U-0.123	U-0.123	U-0.104	U-0.104	U-0.090	U-0.090	U-0.080	U-0.080	U-0.071	U-0.071	U-0.061	U-0.061	U-0.061
Metal building	U-0.079	U-0.079	U-0.079	U-0.079	U-0.079	U-0.052	U-0.052	U-0.052	U-0.052	U-0.052	U-0.052	U-0.052	U-0.052	U-0.039	U-0.052	U-0.039
Metal framed	U-0.077	U-0.077	U-0.077	U-0.064	U-0.064	U-0.064	U-0.064	U-0.06 4	U-0.064	U-0.064	U-0.064	U-0.057	U-0.064	U-0.052	U-0.045	U-0.045
Wood framed and other ^c	U-0.064	U-0.064	U-0.064	U-0.064	U-0.064	U-0.064	U-0.064	U-0.064	U-0.064	U-0.064	U-0.051	U-0.051	U-0.051	U-0.051	U-0.036	U-0.036
							Walls, be	low grade								
Below-grade wall ^c	C-1.140*	C-1.140°	C-1.140°	C-1.140°	C-1.140°	C-1.140°	C-0.119	C-0.119	C-0.119	C-0.119	C-0.119	C-0.119	C-0.092	C-0.092	C-0.092	C-0.092
	•						Fic	oors					•			•
Mass ^d	U-0.322*	U-0.322 *	U-0.107	U-0.087	U-0.076	U-0.076	U-0.076	U-0.07 4	U-0.07 4	U-0.064	U-0.06 4	U-0.057	U-0.055	U-0.051	U-0.055	U-0.051
Joist/framing	U-0.066*	U-0.066 *	U-0.033	U-0.033	U-0.033	U-0.033	U-0.033	U-0.033	U-0.033	U-0.033	U-0.033	U-0.033	U-0.033	U-0.033	U-0.033	U-0.033
	Slab-on-grade floors															
Unheated slabs	F-0.73 °	F-0.73 *	F-0.73 °	F-0.73 °	F-0.73 *	F-0.73 *	F-0.54	F-0.54	F-0.54	F-0.54	F-0.54	F-0.52	F-0.40	F-0.40	F-0.40	F-0.40
Heated slabs ^f	F-0.70	F-0.70	F-0.70	F-0.70	F-0.70	F-0.70	F-0.65	F-0.65	F-0.65	F-0.65	F-0.58	F-0.58	F-0.55	F-0.55	F-0.55	F-0.55
	·						Opaqu	e doors						•		
Swinging	U-0.61	U-0.61	U-0.61	U-0.61	U-0.61	U-0.61	U-0.61	U-0.61	U-0.37	U-0.37	U-0.37	U-0.37	U-0.37	U-0.37	U-0.37	U-0.37

For SI: 1 pound per square foot = 4.88 kg/m², 1 pound per cubic foot = 46 kg/m².

ci = Continuous insulation, NR = No requirement, LS = Liner system.

a. Use of Opaque assembly U-factors, C-factors, and F-factors from ANSI/ASHRAE/IESNA 90.1 Appendix A shall be permitted, provided the construction, excluding the cladding system on walls, complies with the appropriate construction details from ANSI/ASHRAE/ISNEA 90.1 Appendix A.

b. Opaque assembly U-factors based on designs tested in accordance with ASTM C1363 shall be permitted. The R-value of continuous insulation shall be permitted to be added to or subtracted from the original tested design.

e. Where heated slabs are below grade, below-grade walls shall comply with the F-factor requirements for heated slabs.

d. "Mass floors" shall include floors weighing not less than:

1. 35 pounds per square foot of floor surface area; or

2. 25 pounds per square foot of floor surface area where the material weight is not more than 120 pounds per cubic foot.

e. These C-, F- and U-factors are based on assemblies that are not required to contain insulation.

f. Evidence of compliance with the *F*-factors indicated in the table for heated slabs shall be demonstrated by the application of the unheated slab *F*-factors and *R-values* derived from ASHRAE 90.1 Appendix A.

					Comme
Component	Maximum O	verall U-Factor ^a	Minimur	n R-Values	parenthe change si
	All other	Group R	All other	Group R	
Roofs		• •		•	
Insulation entirely above deck	U-	0.032	R-	30ci	1
Metal buildings ^{a,b}	U-0.031	(U-0.049)	R-25 + R-11 LS (A	ssembly Descriptions)	
Attic and Other	U-0.021	(U-0.027)	R-49	(R-38)	4
Walls, Above grade					
Mass	U-0.080	U-0.071	R-13.3ci	R-15.2ci	
Metal building ^c	U-0.052	2 (U-0.054)		(R-11 + R-13ci or 9.5ci)	Comme for contin
Metal-framed	U-	0.064		₹-7.5ci <u>or</u> <u>13ci</u>	
Wood-framed and other	U-	0.051	R-20+H R-2	R-7.5ci or R-3.8ci or 23 or 15ci	
Walls, Below Grade ^c					
Below-grade wall	C-0.09	2 C-0.119	R-10c	i R-7.5ci	1
Floors				-	1
Mass ^d	U-0.064	U-0.057	R-12.5ci	R-14.6ci	
Joist/Framing-metal	U-0. 033- 0	<u>32 (U-0.038)</u>	R- 30 3	8 (R-30)	1
Joist/Framing – Wood & Other	U-).033 3	R	-30	
Slab-on-Grade Floors			•		
Unheated slabs	<u>F-0.48</u> F-0.54	<u>F-0.45</u> F-0.52	R-10 for <u>48</u> 24 in. below	R-15 for <u>48</u> 24 in. below	
Heated slabs ^{ef}	F-0.5	5 F-0.58	R-10 for entire slat	0R-15 for 36" below ^f	
Opaque Doors				-	1
Swinging	U	-0.37	N	J/A	
(Roll up or sliding) Non-Swinging	U <u>P</u>	-0.20)	N/A	R-4.75	1
Upward-acting, Sectional	1	<u>N/A</u>	<u>R</u>	-10	

TABLE C402.1 (2011 CBES values in parentheses and red font)

For SI: 1 pound per square foot = 4.88 kg/m^2 , 1 pound per cubic foot = 16 kg/m^3 .

ci = Continuous insulation, LS = Liner system.

a. Use of Opaque assembly U-factors, C-factors, and F-factors from ANSI/ASHRAE/IESNA 90.1 Appendix A shall be permitted, provided the construction, excluding the cladding system on walls, complies with the appropriate construction details from ANSI/ASHRAE/ISNEA 90.1 Appendix A.

b. Opaque assembly U-factors based on designs tested in accordance with ASTM C1363 shall be permitted. The R-value of continuous insulation shall be permitted to be added to or subtracted from the original tested design.
 c. Where heated slabs are below grade, below-grade walls shall comply with the *F*-factor requirements for heated slabs.

d. "Mass floors" shall include floors weighing not less than:

1. 35 pounds per square foot of floor surface area; or

2. 25 pounds per square foot of floor surface area where the material weight is not more than 120 pounds per cubic foot.

e. These C, F- and U-factors are based on assemblies that are not required to contain insula

____Evidence of compliance with the F-factors indicated in the table for heated slabs shall be demonstrated by the application of the unheated slab Ff.e. factors and *R-values* derived from ASIRAE 90.1-2013 Appendix A. f. Insulation placed under entire heated slab, and around perimeter

nt [NAV6]: 2011 CBES values are in ses and red font. If not present, then no nce 2011 CBES.

nt [NAV7]: Need equivalent single-value uous insulation (ci) only

*

C402.2 Specific building thermal envelope insulation requirements (Prescriptive). Insulation in building thermal envelope opaque assemblies shall comply with Sections C402.2.1 through C402.2.6 and Table C402.1.3.

C402.2.1 Multiple layers of continuous insulation board. Where two or more layers of continuous insulation board are used in a construction assembly, the continuous insulation boards shall be installed in accordance with Section C303.2. Where the continuous insulation board manufacturer's instructions do not address installation of two or more layers, the edge joints between each layer of continuous insulation boards shall be staggered.

C402.2.2 Roof assembly. The minimum thermal resistance (*R*-value) of the insulating material installed either between the roof framing or continuously on the roof assembly shall be as specified in Table C402.1.3, based on construction materials used in the roof assembly. Skylight curbs shall be insulated to the level of roofs with insulation entirely above deck or R-5, whichever is less.

Mechanical curbs shall be insulated to the level of roofs with insulation entirely above deck or R-5, whichever is less.

Exceptions:

- Continuously insulated roof assemblies where the thickness of insulation varies 1 inch (25 mm) or less and where the area-weighted U-factor is equivalent to the same assembly with the R-value specified in Table C402.1.-3.
- 2. Where tapered insulation is used with insulation entirely above deck, the *R*-value where the insulation thickness varies 1 inch (25 mm) or less from the minimum thickness of tapered insulation shall comply with the *R*-value specified in Table C402.1 $\stackrel{\circ}{\rightarrow}$.
- Unit skylight curbs included as a component of a skylight listed and labeled in accordance with NFRC 100 shall not be required to be insulated.

Insulation installed on a suspended ceiling with removable ceiling tiles shall not be considered part of the mini-

mum thermal resistance of the roof insulation.

C402.2.3 Thermal resistance of above-grade walls. The minimum thermal resistance (*R*-value) of materials installed in the wall cavity between framing members and continuously on the walls shall be as specified in Table C401.3, based on framing type and construction materials used in the wall assembly. The *R*-value of integral insulation installed in concrete masonry units shall not be used in determining compliance with Table C402.1-3.

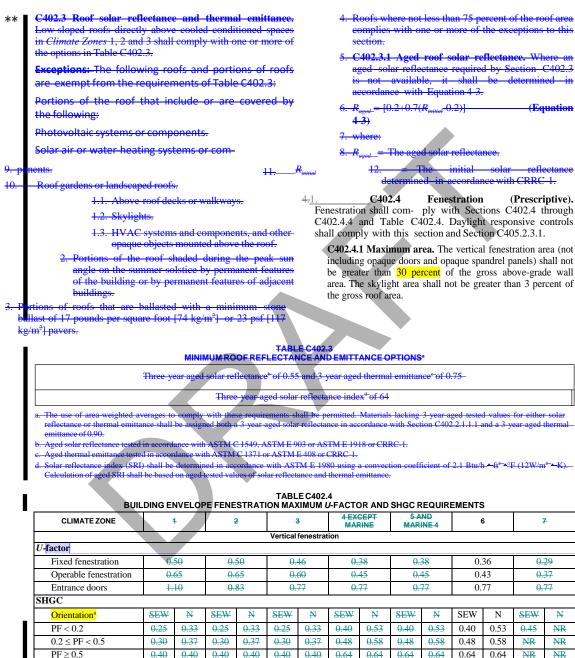
"Mass walls" shall include walls:

- 1. Weighing not less than 35 psf (170 kg/m²) of wall surface area.
- 2. Weighing not less than 25 psf (120 kg/m²) of wall surface area where the material weight is not more than 120 pcf (1900 kg/m³).
- 3. Having a heat capacity exceeding 7 Btu/ft² \cdot °F (144 cage/m² \cdot K).
- Having a heat capacity exceeding 5 Btu/ft² · °F (103 kJ/m² · K), where the material weight is not more than 120 pcf (1900 kg/m³).

C402.2.4 Floors. The thermal properties (component *R*-values or assembly *U*-, *C*- or *F*-factors) of floor assemblies over outdoor air or unconditioned space shall be as specified in Table C402.1.3 or C402.1.4 based on the construction materials used in the floor assembly. Floor framing cavity insulation or structural slab insulation shall be installed to maintain permanent contact with the underside of the subfloor decking or structural slabs.

Exceptions:

- 1. The floor framing cavity insulation or structural slab insulation shall be permitted to be in contact with the top side of sheathing or continuous insulation installed on the bottom side of floor assemblies where combined with insulation that meets or exceeds the minimum *R*-value in Table C402.1:4 for "Metal framed" or "Wood framed and other" values for "Walls, Above Grade" and extends from the bottom to the top of all perimeter floor framing or floor assembly members.
- 2. Insulation applied to the underside of concrete floor slabs shall be permitted an airspace of not more than 1 inch (25 mm) where it turns up and is in contact with the underside of the floor under walls associated with the *building thermal envelope*.


C402.2.5 Slabs-on-grade perimeter insulation. Where the slab on grade is in contact with the ground, the minimum thermal resistance (R-value) of the insulation around the perimeter of unheated or heated slab-on-grade floors designed in accordance with the R-value method of Section C402.1.3 shall be as specified in Table C402.1.3. The insulation shall be placed on the outside of the foundation or on the inside of the foundation wall. The insulation shall extend downward from the top of the slab for a minimum distance as shown in the table or to the top of the footing, whichever is less, or downward to at least the bottom of the slab and then horizontally to the interior or exterior for the total distance shown in the table. Insulation extending away from the building shall be protected by pavement or by not less than of 10 inches (254 mm) of soil

Exception: Where the slab-on-grade floor is greater than $\frac{2448}{248}$ inches ($\frac{61122}{22}$ mm) below the finished exterior grade, perimeter insulation is not required.

C402.2.6 Insulation of radiant heating systems. Radiant heating system panels, and their associated components that are installed in interior or exterior <u>non-slab</u> assemblies shall be insulated with a minimum of R-3.5 $(0.62 \text{ m}^2/\text{K} \cdot \text{W})$ on all surfaces not facing the space being heated. Radiant heat- ing system panels that are installed in the building thermal envelope shall be separated from the exterior of the build- ing or unconditioned or exempt spaces by not less than the *R*-value of insulation installed in the opaque assembly in which they are installed or the assembly shall comply with Section C402.1.4.

Exception: Heated slabs on grade insulated in accordance with Section C402.2.5.

COMMERCIAL ENERGY EFFICIENCY C-35 2015 INTERNATIONAL ENERGY CONSERVATION CODE®

complies with one or more of the exceptions to this

aged solar reflectance required by Section C402.3 determined in

Equation

eflectance accordance with CRRC-1.

(Prescriptive). Fenestration shall com- ply with Sections C402.4 through C402.4,4 and Table C402.4. Daylight responsive controls

including opaque doors and opaque spandrel panels) shall not be greater than 30 percent of the gross above-grade wall area. The skylight area shall not be greater than 3 percent of

N

NR

NR

0.50

NR

Comment [NAV8]: Stakeholders: IECC has re-organized this section . 2011 CBES had: Curtain wall/storefront U-factor 0.42 Entrance door U-factor 0.80 All other U-factor 0.50

Comment [NAV9]: Stakeholders (FYI): Skylight U-factor was 0.60 in 2011 CBES.

NR = No requirement, PF = Projection factor.

0.75

0.35

0.65

0.35

U-factor

SHGC

a. "N" indicates vertical fenestration oriented within 45 degrees of true north. "SEW" indicates orientations other than "N." For buildings in the southernhemisphere, reverse south and north. Buildings located at less than 23.5 degrees latitude shall use SEW for all orientation

Skylights

0.55

0.35

0.50

0.40

0.50

0.40

0.50

0.40

C402.4.1.1 Increased vertical fenestration area with daylight responsive controls.

InClimateZones1through 6, Nnot more than 40 percent of the gross above-grade wall area shall be permitted to be vertical fenestration, provided all of the following requirements are met:

- In buildings not greater than two stories above grade, not less than 50 percent of the net floor area is within a *daylight zone*.
- In buildings three or more stories above grade, not less than 25 percent of the net floor area is within a *daylight zone*.
- 3. Daylight responsive controls complying with Section C405.2.3.1 are installed in *daylight zones*.
- Visible transmittance (VT) of vertical fenestration is not less than 1.1 times solar heat gain coefficient (SHGC).

Exception: Fenestration that is outside the scope of NFRC 200 is not required to comply with Item 4.

C402.4.1.2 Increased skylight area with daylight responsive controls. The skylight area shall be permitted to be not more than 5 percent of the roof area provided daylight responsive controls complying with Section C405.2.3.1 are installed in daylight zones under skylights.

C402.4.2 Minimum skylight fenestration area. In an enclosed space greater than 2,500 square feet (232 m^2) in floor area, directly under a roof with not less than 75 percent of the ceiling area with a ceiling height greater than 15 feet (4572 mm), and used as an office, lobby, atrium, concourse, corridor, storage space, gymnasium/exercise center, convention center, automotive service area, space where manufacturing occurs, nonrefrigerated warehouse, retail store, distribution/sorting area, transportation depot or workshop, the total *daylight zone* under skylights shall be not less than half the floor area and shall provide one of the following:

- A minimum skylight area to *daylight zone* under skylights of not less than 3 percent where all skylights have a VT of at least 0.40 as determined in accordance with Section C303.1.3.
- 2. A minimum skylight effective aperture of at least 1 percent, determined in accordance with Equation 4-4.

Skylight Effective Aperture = 0.85 · Skylight Area · Skylight VT · WF

_ Daylight z	one under skylight (Equation 4-4)
where:	
Skylight area	 Total fenestration area of skylights.
Skylight VT	 Area weighted average visible transmittance of skylights.
WF	 Area weighted average well factor, where well factor is 0.9 if light well depth is less than 2 feet (610 mm), or 0.7 if light well depth is 2 feet (610 mm) or greater.

Light well depth = Measure vertically from the underside of the lowest point of the skylight glazing to the ceiling plane under the skylight.

Exception: Skylights above *daylight zones* of enclosed spaces are not required in:

1. Buildings in Climate Zones 6 through 8.

- 2-1. Spaces where the designed general lighting power densities are less than 0.5 W/ft² (5.4 W/m²).
- 2. Areas where it is documented that existing structures or natural objects block direct beam sun- light on at least half of the roof over the enclosed area for more than 1,500 daytime hours per year between 8 a.m. and 4 p.m.

3. Spaces where the *daylight zone* under rooftop monitors is greater than 50 percent of the enclosed space floor area.

Spaces where the total area minus the area of *daylight zones* adjacent to vertical fenestration is less than 2,500 square feet (232 m^2), and where the lighting is controlled according to Section C405.2.5.

C402.4.2.1 Lighting controls in daylight zones under skylights. *Daylight responsive controls* complying with Section C405.2.3.1 shall be provided to control all electric lights with *daylight zones* under skylights.

C402.4.2.2 Haze factor. Skylights in office, storage, automotive service, manufacturing, nonrefrigerated warehouse, retail store and distribution/sorting area spaces shall have a glazing material or diffuser with a haze factor greater than 90 percent when tested in accordance with ASTM D 1003.

Exception: Skylights designed and installed to exclude direct sunlight entering the occupied space by the use of fixed or automated baffles or the geometry of skylight and light well.

C402.4.3 Maximum *U*-factor and **SHGC**. The maximum *U*-factor and solar heat gain coefficient (SHGC) for fenestration shall be as specified in Table C402.4.

The window projection factor shall be determined in accordance with Equation 4-5.

PF = A/B

(Equation 4-5)

where:

- PF= Projection factor (decimal).
- A = Distance measured horizontally from the furthest continuous extremity of any overhang, eave or permanently attached shading device to the vertical surface of the glazing.
- B = Distance measured vertically from the bottom of the glazing to the underside of the overhang, eave or permanently attached shading device.

Where different windows or glass doors have different *PF* values, they shall each be evaluated separately.

2015 INTERNATIONAL ENERGY CONSERVATION CODE®

C-37

C402.4.3.1 Increased skylight SHGC. In *Climate Zones* 1 through 6, skylights <u>Skylights</u> shall be permitted a maxi- mum SHGC of 0.60 where located above *daylight zones* provided with *daylight responsive controls*.

C402.4.3.2 Increased skylight U-factor. Where skylights are installed above daylight zones provided with daylight responsive controls, a maximum U factor of

0.9 shall be permitted in *Climate Zones* 1 through 3 and a maximum U-factor of 0.75 shall be permitted<u>. in *Cli*mate Zones 4 through 8.</u>

C402.4.3.3 Dynamic glazing. Where *dynamic glazing* is intended to satisfy the SHGC and VT requirements of Table C402.4, the ratio of the higher to lower labeled SHGC shall be greater than or equal to 2.4, and the *dynamic glazing* shall be automatically controlled to modulate the amount of solar gain into the space in multiple steps. Dynamic glazing shall be considered separately from other fenestration, and area-weighted averaging with other fenestration that is not dynamic glazing shall not be permitted.

Exception: Dynamic glazing is not required to comply with this section where both the lower and higher labeled SHGC already comply with the requirements of Table C402.3.

C402.4.3.4 Area-weighted *U*-factor. An areaweighted average shall be permitted to satisfy the *U*factor requirements for each fenestration product category listed in Table C402.4. Individual fenestration products from different fenestration product categories listed in Table C402.4 shall not be combined in calculating area-weighted average *U*-factor.

C402.4.4 Doors. *Opaque doors* shall comply with the applicable requirements for doors as specified in Tables C402.1.3 and C402.1.4 and be considered part of the gross area of above-grade walls that are part of the building *thermal envelope*. Other doors shall comply with the provisions of Section C402.4.3 for vertical fenestration.

C402.5 Air leakage—thermal envelope (Mandatory). The *thermal envelope* of buildings shall comply with Sections C402.5.1 through C402.5.8, or the building *thermal envelope* shall be tested in accordance with ASTM E 779 at a pressure differential of 0.3 inch water gauge (75 Pa) or an equivalent method approved by the code officialcode official or authority having jurisdiction-and deemed to comply with the provisions of this section when the tested air leakage rate of the building thermal envelope is not greater than 0.40-50 cfm/per square foot of shell area (excluding area of slab and below grade walls) at 50 Pa in accordance with ASTM E 779 or an equivalent method approved by the eode official-code official-code official code official or authority having jurisdiction ft^2 (0.2 L/s - m^2). Where compliance is based on such testing, the building shall also comply with Sections C402.5.5, C402.5.6 and C402.5.7.

C402.5.1 Air barriers. A continuous air barrier shall be provided throughout the building thermal envelope. The air barriers shall be permitted to be located on the inside or outside of the building envelope, located within the assemblies composing the envelope, or any combination thereof. The air barrier shall comply with Sections C402.5.1.1 and

C402.5.1.1 Air barrier construction. The *continuous air barrier* shall be constructed to comply with the following:

- 1. The air barrier shall be continuous for all assemblies that are the thermal envelope of the building and across the joints and assemblies.
- 2. Air barrier joints and seams shall be sealed, including sealing transitions in places and changes in materials. The joints and seals shall be securely installed in or on the joint for its entire length so as not to dislodge, loosen or otherwise impair its ability to resist positive and negative pressure from wind, stack effect and mechanical ventilation.
- 3. Penetrations of the air barrier shall be caulked, gasketed or otherwise sealed in a manner compatible with the construction materials and location. Joints and seals associated with penetrations shall be sealed in the same manner or taped or covered with moisture vapor-permeable wrapping material. Sealing materials shall be appropriate to the construction materials being sealed and shall be securely installed around the penetration so as not to dislodge, loosen or otherwise impair the penetrations' ability to resist positive and negative pressure from wind, stack effect and mechanical ventilation. Sealing of concealed fire sprinklers, where required, shall be in a manner that is recommended by the manufacturer. Caulking or other adhesive sealants shall not be used to fill voids between fire sprinkler cover plates and walls or ceilings.
- Recessed lighting fixtures shall comply with Section C402.5.7. Where similar objects are installed that penetrate the air barrier, provisions shall be made to maintain the integrity of the air barrier.

C402.5.1.2 Air barrier compliance options. A continuous air barrier for the opaque building envelope shall comply with Section C402.5.1.2.1 or C402.5.1.2.2.

C402.5.1.2.1 Materials. Materials with an air permeability not greater than 0.004 cfm/ft² (0.02 L/s \cdot m²) under a pressure differential of 0.3 inch water gauge (75 Pa) when tested in accordance with ASTM E 2178 shall comply with this section. Materials in Items 1 through 16 shall be deemed to comply with this section, provided joints are sealed and materials are installed as air barriers in accordance with the manufacturer's instructions.

- Plywood with a thickness of not less than ³/₈ inch (10 mm).
- 2. Oriented strand board having a thickness of

Comment [NAV10]: These values will be placed directly in final fenestration Table C402.4.

not less than ³/ inch (10 mm).

C402.5.1.2.

Exception: Air barriers are not required in buildings located in *Climate Zone* 2B.

C-38

3. Extruded polystyrene insulation board having a thickness of not less than $^{1/2}$ inch (12.7 mm).

- 4. Foil-back polyisocyanurate insulation board having a thickness of not less than 1/2 inch (12.7 mm).
- Closed-cell spray foam a minimum density of 1.5 pcf (2.4 kg/m³) having a thickness of

not less than $1^{1/2}$, inches (38 mm).

- Open-cell spray foam with a density between 0.4 and 1.5 pcf (0.6 and 2.4 kg/m³) and having a thickness of not less than 4.5 inches (113 mm).
- 7. Exterior or interior gypsum board having a thickness of not less than 1/2 inch (12.7 mm).
- Cement board having a thickness of not less than ¹/₂ inch (12.7 mm).
- 9. Built-up roofing membrane.
- 10. Modified bituminous roof membrane.
- 11. Fully adhered single-ply roof membrane.
- A Portland cement/sand parge, or gypsum plaster having a thickness of not less than ⁵/₈ inch (15.9 mm).
- 13. Cast-in-place and precast concrete.
- 14. Fully grouted concrete block masonry.
- 15. Sheet steel or aluminum.
- 16. Solid or hollow masonry constructed of clay or shale masonry units.

C402.5.1.2.2 Assemblies. Assemblies of materials and components with an average air leakage not greater than 0.04 cfm/ft² ($0.2 \text{ L/s} \cdot \text{m}^2$) under a pressure differential of 0.3 inch of water gauge (w.g.)(75 Pa) when tested in accordance with ASTM E 2357, ASTM E 1677 or ASTM E 283 shall comply with this section. Assemblies listed in Items 1 through 3 shall be deemed to comply, provided joints are sealed and the requirements of Section C402.5.1.1 are met.

- 1. Concrete masonry walls coated with either one application of block filler or two applications of a paint or sealer coating.
- Masonry walls constructed of clay or shale masonry units with a nominal width of 4 inches (102 mm) or more.
- A Portland cement/sand parge, stucco or plaster not less than ¹/₂ inch (12.7 mm) in thickness.

C402.5.2 Air leakage of fenestration. The air leakage of fenestration assemblies shall meet the provisions of Table C402.5.2. Testing shall be in accordance with the applicable reference test standard in Table C402.5.2 by an accredited, independent testing laboratory and *labeled* by the manufacturer.

Exceptions:

**

- 1. Field-fabricated fenestration assemblies that are sealed in accordance with Section C402.5.1.
- 2. Fenestration in buildings that comply with the testing alternative of Section C402.5 are not

2015 INTERNATIONAL ENERGY CONSERVATION CODE®

required to meet the air leakage requirements in Table C402.5.2.

C402.5.3 Rooms containing fuel-burning appliances. In <u>Climate Zones 3 through 8, where Where</u> open combustion air ducts provide combustion air to open combustion space

conditioning fuel-burning appliances, the appliances and combustion air openings shall be located outside of the *building thermal envelope* or enclosed in a room isolated from inside the thermal envelope. Such rooms shall be sealed and insulated in accordance with the envelope requirements of Table C402.1.3 or C402.1.4, where the walls, floors and ceilings shall meet the minimum of the below-grade wall *R*-value requirement. The door into the room shall be fully gasketed, and any water lines and ducts in the room insulated in accordance with Section C403. The combustion air duct shall be insulated, where it passes through conditioned space, to a minimum of R-8.

Exceptions:

- 1. Direct vent appliances with both intake and exhaust pipes installed continuous to the outside.
- 2. Fireplaces and stoves complying with Sections 901 through 905 of the *International Mechanical Code*, and Section 2111.13 of the *International Building Code*.

C402.5.4 Doors and access openings to shafts, chutes, stairways and elevator lobbies. Doors and access openings from conditioned space to shafts, chutes stairways and elevator lobbies not within the scope of the fenestration assemblies covered by Section C402.5.2 shall be gasketed, weatherstripped or sealed.

Exceptions:

- 1. Door openings required to comply with Section 716 or 716.4 of the *International Building Code*.
- 2. Doors and door openings required by comply with UL 1784 by the *International Building Code*.

TABLE C402.5.2 MAXIMUM AIR LEAKAGE RATE FOR FENESTRATION ASSEMBLIES							
FENESTRATION ASSEMBLY	MAXIMUM RATE (CFM/FT ²)	TEST PROCEDURE					
Windows	0.20ª						
Sliding doors	0.20 ^a	AAMA/WDMA/					
Swinging doors	0.20ª	CSA101/I.S.2/A440					
Skylights – with conden- sation weepage openings	0.30	or NFRC 400					
Skylights - all other	0.20ª						
Curtain walls	0.06	NEDG 400					
Storefront glazing	0.06	NFRC 400 or					
Commercial glazed swinging entrance doors	1.00	ASTM E 283 at 1.57 psf (75 Pa)					
Revolving doors	1.00	(/*****)					
Garage doors	0.40	ANSI/DASMA 105,					
Rolling doors	1.00	NFRC 400, or					
High-speed doors	<mark>1.30</mark>	ASTM E 283 at 1.57 psf (75 Pa)					

- For SI: 1 cubic foot per minute = 0.47L/s, 1 square foot = $0.093 m^2$.
- a. The maximum rate for windows, sliding and swinging doors, and skylights is permitted to be 0.3 cfm per square foot of fenestration or door area when tested in accordance with AAMA/WDMA/CSA101/I.S.2/A440 at 6.24 psf (300 Pa).

C402.5.5 Air intakes, exhaust openings, stairways and shafts. Stairway enclosures, elevator shaft vents and other outdoor air intakes and exhaust openings integral to the building envelope shall be provided with dampers in accordance with Section C403.2.4.3.

C402.5.6 Loading dock weatherseals and thermal requirements. Cargo doors and loading dock doors shall be equipped with weatherseals to restrict infiltration when vehicles are parked in the openingdoor vov If equipped with an interior dock leveler the deck of the leveler and rear pit wall shall be insulated with a minimum of 1.5 inches of sprayed closed cell foam. The side pit walls and pit slab shall be insulated per the slab on grade standard in Table C402.1. The spaces between the pit wall and the deck skirts for the leveler shall be weather-stripped.

C402.5.7 Vestibules. Building entrances shall be protected with an enclosed vestibule, with all doors opening into and out of the vestibule equipped with self-closing devices. Vestibules shall be designed so that in passing through the vestibule it is not necessary for the interior and exterior doors to open at the same time. The installation of one or more revolving doors in the building entrance shall not eliminate the requirement that a vestibule be provided on any doors. adjacent to revolving doors.

Exceptions: Vestibules are not required for the following:

1. Buildings in *Climate Zones* 1 and 2.

- Doors not intended to be used by the $\frac{2}{2}$.1. public, such as doors to mechanical or electrical equip- ment rooms, or intended solely for employee use.
- Doors opening directly from a sleeping 3.2 unit or dwelling unit.
- Doors that open directly from a space less 4.3 than 3,000 square feet (298 m²) in area.
- 5.4. Revolving doors.
- 5. Doors that have an air curtain with a velocity of not less than 6.56 feet per second (2 m/s) at the floor that have been tested in accordance with ANSI/AMCA 220 and installed in accordance with the manufacturer's instructions. Manual or automatic controls shall be provided that will operate the air curtain with the opening and closing of the door. Air curtains and their controls shall comply with Section C408.2.3.

C402.5.7.1 Vestibule tempering. Where vestibule space tempering is included, a maximum temperature setting of 55°F (13°C) for heating mode shall be utilized. Mechanical cooling of vestibules prohibited.

C502.4.7.2 Vestibules Vestibule construction. meeting the requirements of section 502.4.7.1 shall be constructed according to the building envelope requirements of Section 502.1.

C502.4.7.3 Vestibule thermostatic controls. Vestibules meeting the requirements of section 502.4.7.1 shall be zoned separately from the

conditioned building. Thermostats located inside vestibules shall meet the following requirements:

- 1. Programmable, and Tamper-proof, and
- 3.
- Placed in a location inaccessible to the general public.

Exception: Vestibule spaces served by radiant floor heating may utilize a non-programmable thermostat.

C402.5.8 Recessed lighting. Recessed luminaires and any other building component installed in the building thermal envelope shall be all of the following:

- 1. IC-rated.
- 2. Labeled as having an air leakage rate of not more 2.0 cfm (0.944 L/s) when tested in accordance with ASTM E 283 at a 1.57 psf (75 Pa) pressure differen-
- 3. Sealed with a gasket or caulk between the housing and interior wall or ceiling covering.

SECTION C403 BUILDING MECHANICAL SYSTEMS

C403.1 General. Mechanical systems and equipment serving the building heating, cooling or ventilating needs shall comply with Section C403.2 and shall comply with Sections

C403.3 and C403.4 based on the equipment and systems pro-vided.

Walk-in coolers, walk-in freezers, refrigerated warehouse coolers and refrigerated warehouse freezers shall comply with Section C403.2.15 or 403.2.16.

C403.1.2 Electric resistance space heating. Building heating with electrical resistance units, including baseboard radiation, heat pump reheat coils, duct coils, boilers, domestic hot water heaters and coils in terminal units and air systems, is prohibited.

Exceptions:

- Areas, such as stairways, that are not permitted to be penetrated with piping or duct and no other method of heating is possible.
- . Replacement of existing electrical resistance unit.
- Special conditions of occupancy or use that require electrical resistance heat to maintain health, safety or environmental conditions.
- Limited areas where a practical application of resistance electrical heat is demonstrated (e.g. small interior space such as a rest room which is distant from the distribution system, hazardous material storerooms, stairwell or other means of emergency egress).
- Domestic hot water heaters less than 5 kW in total unit input capacity.

C403.2 Provisions applicable to all mechanical systems (Mandatory). Mechanical systems and equipment serving the building heating, cooling or ventilating needs shall com- ply with Sections C403.2.1 through C403.2.17.

C403.2.1 Calculation of heating and cooling loads. Design loads associated with heating, ventilating and air conditioning of the building shall be determined in accor- dance with ANSI/ASHRAE/ACCA Standard 183 or by an *approved* equivalent computational procedure using the design parameters specified in Chapter 3. The design loads shall account for the building envelope, lighting, ventilation and occupancy loads

C-40

based on the project design. Heating and cooling loads shall be adjusted to account for load reduc- tions that are achieved where energy recovery systems are utilized in the HVAC system in accordance with the ASHRAE *HVAC Systems and Equipment Handbook* by an approved equivalent computational procedure.

C403.2.2 Equipment sizing. The output capacity of heating and cooling equipment shall be not greater than the loads calculated in accordance with Section C403.2.1. A single piece of equipment providing both heating and cooling shall satisfy this provision for one function with the capacity for the other function as small as possible, within available equipment options.

Exceptions:

- 1. Required standby equipment and systems provided with controls and devices that allow such systems or equipment to operate automatically only when the primary equipment is not operating.
- 2. Multiple units of the same equipment type with combined capacities exceeding the design load and provided with controls that have the capability to sequence the operation of each unit based on load.

C403.2.3 HVAC equipment performance requirements. Equipment shall meet the minimum efficiency requirements of Tables C403.2.3(1), C403.2.3(2), C403.2.3(3), C403.2.3(4), C403.2.3(5), C403.2.3(6), C403.2.3(7), C403.2.3(8) and C403.2.3(9) when tested and rated in accordance with the applicable test procedure. Plate-type liquid-to-liquid heat exchangers shall meet the minimum requirements of Table C403.2.3(10). The efficiency shall be verified through certification under an approved certification program or, where a certification program does not exist, the equipment efficiency ratings shall be supported by data furnished by the manufacturer. Where multiple rating conditions or performance requirements are provided, the equipment shall satisfy all stated requirements. Where components, such as indoor or outdoor coils, from different manufacturers are used, calculations and supporting data shall be furnished by the designer that demonstrates that the combined efficiency of the specified components meets the requirements herein.

2015 INTERNATIONAL ENERGY CONSERVATION CODE®

ELECTRICALLY OPERATED UNITARY AIR CONDITIONERS AND CONDENSING UNITS							
EQUIPMENT TYPE	SIZE CATEGORY		SUBCATEGORY OR	MINIMUM E	TEST		
		SECTION TYPE	RATING CONDITION	Before 1/1/2016	As of 1/1/2016	PROCEDURE ^a	
Air conditioners,	< 65,000 Btu/hb	All	Split System	13.0 SEER	13.0 SEER		
air cooled	< 05,000 Blan	7111	Single Package	13.0 SEER	14.0 SEER ^c		
Through-the-wall	≤ 30,000 Btu/h ^b	All	Split system	12.0 SEER	12.0 SEER	AHRI	
(air cooled)	≤ 50,000 Btu/II	All	Single Package	12.0 SEER	12.0 SEER	210/240	
Small-duct high-velocity (air cooled)	< 65,000 Btu/h ^b	All	Split System	11.0 SEER	11.0 SEER		
	≥ 65,000 Btu/h	Electric Resistance (or None)None	Split System and Single Package	11.2 EER 11.4 IEER	11.2 EER 12.8 IEER		
	and < 135,000 Btu/h	<u>Non-</u> Electric ^e All-	Split System and Single Package	11.0 EER 11.2 IEER	11.0 EER 12.6 IEER		
	≥ 135,000 Btu/h and	Electric Resistance (or None)None	Split System and Single Package	11.0 EER 11.2 IEER	11.0 EER 12.4 IEER		
Air conditioners,	< 240,000 Btu/h	<u>Non-</u> Electric ^e All-	Split System and Single Package	10.8 EER 11.0 IEER	10.8 EER 12.2 IEER	AHRI	
air cooled	≥ 240,000 Btu/h and	Electric Resistance (or None)None	Split System and Single Package	10.1 EER 10.2 IEER	10.0 EER 11.6 IEER	340/360	
	< 760,000 Btu/h	<u>Non-</u> Electric ^e All-	Split System and Single Package	9.8 EER 9.9 IEER	9.8 EER 11.4 IEER		
	≥ 760,000 Btu/h	Electric Resistance (or None)None	Split System and Single Package	9.7 EER 9.8 IEER	9.7 EER 11.2 IEER		
	2 700,000 Bul/I	<u>Non-</u> Electric ^e All-	Split System and Single Package	9.5 EER 9.6 IEER	9.5 EER 11.0 IEER		
	< 65,000 Btu/h ^b	All	Split System and Single Package	12.1 EER 12.3 IEER	12.1 EER 12.3 IEER	AHRI 210/240	
	\geq 65,000 Btu/h and	Electric Resistance (or None)None	Split System and Single Package	12.1 EER 12.3 IEER	12.1 EER 13.9 IEER		
	< 135,000 Btu/h	Non- Electric ^e All-	Split System and Single Package	11.9 EER 12.1 IEER	11.9 EER 13.7 IEER		
	≥ 135,000 Btu/h and	Electric Resistance (or None)None	Split System and Single Package	12.5 EER 12.5 IEER	12.5 EER 13.9 IEER		
Air conditioners, water cooled	< 240,000 Btu/h	<u>Non-</u> Electric ^e All-	Split System and Single Package	12.3 EER 12.5 IEER	12.3 EER 13.7 IEER	AHRI	
	≥ 240,000 Btu/h	Electric Resistance (or None)None	Split System and Single Package	12.4 EER 12.6 IEER	12.4 EER 13.6 IEER	340/360	
	and < 760,000 Btu/h	<u>Non-</u> Electric ^e All-	Split System and Single Package	12.2 EER 12.4 IEER	12.2 EER 13.4 IEER		
	2 7 60 000 Dr. 1	Electric Resistance (or None)None	Split System and Single Package	12.2 EER 12.4 IEER	12.2 EER 13.5 IEER		
	≥ 760,000 Btu/h	<u>Non-</u> Electric ^e All-	Split System and Single Package	12.0 EER 12.2 IEER	12.0 EER 13.3 IEER		

TABLE C403.2.3(1) MINIMUMEFFICIENCY REQUIREMENTS: ELECTRICALLY OPERATED UNITARY AIR CONDITIONERS AND CONDENSING UNITS

(continued)

ELECTRICALLY OPERATED UNITARY AIR CONDITIONERS AND CONDENSING UNITS							
EQUIPMENT TYPE	SIZE CATEGORY	HEATING SECTION TYPE	SUB-CATEGORY OR RATING CONDITION	-		TEST PROCEDURE [®]	
		SECTION TIPE		Before 1/1/2016	As of 1/1/2016		
	< 65.000 Btu/h ^b	All	Split System and	12.1 EER	12.1 EER	AHRI	
	(00,000 Blain		Single Package	12.3 IEER	12.3 IEER	210/240	
	> (5 000 Dt+ /h	Electric Resistance	Split System and	12.1 EER	12.1 EER		
	≥ 65,000 Btu/h and	(or None)None	Single Package	12.3 IEER	12.3 IEER		
	<135,000 Btu/h	Non-	Split System and	11.9 EER	11.9 EER		
	< 155,000 Bta/II	Flectric ^c All	Single Package	12.1 IEER	12.1 IEER		
		Electric Resistance	Split System and	12.0 EER	12.0 EER		
	≥ 135,000 Btu/h	(or None)None	Single Package	12.2 IEER	12.2 IEER		
Air conditioners,	≥ 240,000 Btu/h	N	Split System and	11.8 EER	11.8 EER		
evaporatively cooled		<u>Non-</u> Electric ^c All	Single Package	12.0 IEER	12.0 IEER	AHRI	
		Electric Resistance	Split System and	11.9 EER	11.9 EER	340/360	
			(or None)None	Single Package	12.1 IEER	12.1 IEER	
	and < 760.000 Btu/h	New	Split System and	11.7 EER	11.7 EER		
	< 700,000 Blu/II	<u>Non-</u> Electric ^c All	Single Package	11.9 IEER	11.9 IEER		
		Electric Resistance	Split System and	11.7 EER	11.7 EER		
	≥ 760.000 Btu/h	(or None)None	Single Package	11.9 IEER	11.9 IEER		
	≥ 700,000 Btu/II	Non-	Split System and	11.5 EER	11.5 EER		
		Flectric ^c AlL	Single Package	11.7 IEER	11.7 IEER		
Condensing units,	≥ 135.000 Btu/h			10.5 EER	10.5 EER		
air cooled	≥ 155,000 Btu/II			11.8 IEER	11.8 IEER		
Condensing units,	≥ 135,000 Btu/h			13.5 EER	13.5 EER	AHRI	
water cooled	≥ 155,000 Blu/II			14.0 IEER	14.0 IEER	365	
Condensing units,	≥ 135,000 Btu/h			13.5 EER	13.5 EER]	
evaporatively cooled	≥ 155,000 Btu/II			14.0 IEER	14.0 IEER		

TABLE C403.2.3(1)—continued MINIMUMEFFICIENCY REQUIREMENTS: ELECTRICALLY OPERATED UNITARY AIR CONDITIONERS AND CONDENSING UNITS

For SI: 1 British thermal unit per hour = 0.2931 W_2

a. Chapter 6 contains a complete specification of the referenced test procedure, including the reference year version of the test procedure.
 b. Single-phase, air-cooled air conditioners less than 65,000 Btu/h are regulated by NAECA. SEER values are those set by NAECA.
 c. Minimum efficiency as of January 1, 2015. Electric resistance space heating is prohibited per Section C403.1.2. Use "None" Heating Section Type category for exceptions to Section C403.1.2.

MINIMUM EFFICIENCY REQUIREMENTS: ELECTRICALLY OPERATED UNITARY AND APPLIED HEAT PUMPS									
EQUIPMENT TYPE	SIZE CATEGORY	HEATING SECTION TYPE	SUBCATEGORY OR RATING CONDITION			TEST PROCEDURE ^a			
				Before 1/1/2016	As of 1/1/2016				
Air cooled	< 65,000 Btu/h ^b	All	Split System	13.0 SEER ^c	14.0 SEER ^c				
(cooling mode)	< 03,000 Btu/h	All	Single Package	13.0 SEER ^c	14.0 SEER ^c				
Through-the-wall,	≤ 30,000 Btu/h ^b	All	Split System	12.0 SEER	12.0 SEER	AHRI 210/240			
air cooled	≤ 30,000 Blash	Ali	Single Package	12.0 SEER	12.0 SEER				
Single-duct high-velocity air cooled	< 65,000 Btu/h ^b	All	Split System	11.0 SEER	11.0 SEER	1			
	≥ 65,000 Btu/h and	<u>NoneElectric</u> Resistance (or	Split System and Single Package	11.0 EER 11.2 IEER	11.0 EER 12.0 IEER				
	<135,000 Btu/h	<u>Non-</u> Electric ^e All	Split System and Single Package	10.8 EER 11.0 IEER	10.8 EER 11.8 IEER	1			
Air cooled	≥ 135,000 Btu/h and	Electric All <u>None</u> Electric Resistance (or	Split System and	10.6 EER 10.7 IEER	10.6 EER 11.6 IEER	AHRI			
(cooling mode)	< 240,000 Btu/h < 240,000 Btu/h	Non-	Split System and Single Package	10.4 EER 10.5 IEER	10.4 EER 11.4 IEER	340/360			
		Electric ^e All- <u>NoneElectric</u> Resistance (or	Split System and	9.5 EER 9.6 IEER	9.5 EER 10.6 IEER	1			
	≥ 240,000 Btu/h	Non- Electric ^c All-	Split System and Single Package	9.3 EER 9.4 IEER	9.3 EER 9.4 IEER	1			
	< 17,000 Btu/h	All	86°F entering water	12.2 EER	12.2 EER				
Water to Air: Water Loop (cooling mode)	≥ 17,000 Btu/h and < 65,000 Btu/h	All	86°F entering water	13.0 EER	13.0 EER	ISO 13256-1			
	≥ 65,000 Btu/h and < 135,000 Btu/h	All	86°F entering water	13.0 EER	13.0 EER	_			
Water to Air: Ground Water (cooling mode)	<135,000 Btu/h	All	59°F entering water	18.0 EER	18.0 EER	ISO 13256-1			
Brine to Air: Ground Loop (cooling mode)	< 135,000 Btu/h	All	77°F entering water	14.1 EER	14.1 EER	ISO 13256-1			
Water to Water: WaterLoop (cooling mode)	<135,000 Btu/h	All	86°F entering water	10.6 EER	10.6 EER				
Water to Water: Ground Water (cooling mode)	< 135,000 Btu/h	All	59°F entering water	16.3 EER	16.3 EER	ISO 13256-2			
Brine to Water: Ground Loop (cooling mode)	< 135,000 Btu/h	All	77°F entering fluid	12.1 EER	12.1 EER				

TABLE C403.2.3(2) MINIMUM EFFICIENCY REQUIREMENTS: I FCTRICALLY OPERATED LINDS

(continued)

MINIMUM EFFICIENCY REQUIREMENTS: ELECTRICALLY OPERATED UNITARY AND APPLIED HEAT PUMPS								
EQUIPMENT TYPE	SIZE CATEGORY	HEATING SECTION TYPE	SUBCATEGORY OR RATING CONDITION	MINIMUM EFFICIENCY		TEST PROCEDURE [®]		
		SECTION I TPE	RATING CONDITION	Before 1/1/2016	As of 1/1/2016	INCOLDURE		
Air cooled	< 65,000 Btu/h ^b	_	Split System	7.7 HSPF℃	8.2 HSPF ^c			
(heating mode)	< 05,000 Btu/II	_	Single Package	7.7 HSPF [°]	8.0 HSPF ^c			
Through-the-wall,	≤ 30,000 Btu/h ^b	_	Split System	7.4 HSPF	7.4 HSPF	AHRI 210/240		
(air cooled, heating mode)	(cooling capacity)		Single Package	7.4 HSPF	7.4 HSPF			
Small-duct high velocity (air cooled, heating mode)	< 65,000 Btu/h ^b	_	Split System	6.8 HSPF	SPF 6.8 HSPF			
	≥ 65,000 Btu/h and < 135,000 Btu/h (cooling capacity) ≥ 135,000 Btu/h (cooling capacity)		47°F db/43°F wb outdoor air	3.3 COP	3.3 COP			
Air cooled		_	17°F db/15°F wb outdoor air	2.25 COP	2.25 COP	AHRI		
(heating mode)			47°F db/43°F wb outdoor air	3.2 COP	3.2 COP	340/360		
			17°F db/15°F wb outdoor air	2.05 COP	2.05 COP			
Water to Air: Water Loop (heating mode)	< 135,000 Btu/h (cooling capacity)		68°F entering water	4.3 COP	4.3 COP			
Water to Air: Ground Water (heating mode)	< 135,000 Btu/h (cooling capacity)	_	50°F entering water	3.7 COP	3.7 COP	ISO 13256-1		
Brine to Air: Ground Loop (heating mode)	< 135,000 Btu/h (cooling capacity)	_	32°F entering fluid	3.2 COP	3.2 COP			
Water to Water: Water Loop (heating mode)	< 135,000 Btu/h (cooling capacity)		68°F entering water	3.7 COP	3.7 COP			
Water to Water: Ground Water (heating mode)	< 135,000 Btu/h (cooling capacity)	_	50°F entering water	3.1 COP	3.1 COP	ISO 13256-2		
Brine to Water: Ground Loop (heating mode)	< 135,000 Btu/h (cooling capacity)	_	32°F entering fluid	2.5 COP	2.5 COP			

TABLE C403.2.3(2)—continued MINIMUM EFFICIENCY REQUIREMENTS:

For SI: 1 British thermal unit per hour = 0.2931 W, °C = [(°F) - 32]/1.8.
a. Chapter 6 contains a complete specification of the referenced test procedure, including the reference year version of the test procedure.
b. Single-phase, air-cooled air conditioners less than 65,000 Btu/h are regulated by NAECA. SEER values are those set by NAECA.
c. Minimum efficiency as of January 1, 2015. Electric resistance space heating is prohibited per Section C403.1.2. Use "None" Heating Section Type category for exceptions to Section C403.1.2.

с.

COMMERCIAL ENERGY EFFICIENCY 2015 INTERNATIONAL ENERGY CONSERVATION CODE®

C-44

EQUIPMENT TYPE	SIZE CATEGORY (INPUT)	OOM AIR CONDITIONERS AND RO SUBCATEGORY OR RATING CONDITION	MINIMUM EFFICIENCY	TEST PROCEDURE
PTAC (cooling mode) new construction	All Capacities	95°F db outdoor air	14.0 – (0.300 × Cap/1000) EER ^e	
PTAC (cooling mode) replacements ^b	All Capacities	95°F db outdoor air	10.9 - (0.213 × Cap/1000) EER	
PTHP (cooling mode) new construction	All Capacities	95°F db outdoor air	14.0 - (0.300 × Cap/1000) EER	AHRI
PTHP (cooling mode) replacements ^b	All Capacities	95°F db outdoor air	10.8 - (0.213 × Cap/1000) EER	310/380
PTHP (heating mode) new construction	All Capacities	_	3.2 - (0.026 × Cap/1000) COP	
PTHP (heating mode) replacements ^b	All Capacities	_	2.9 - (0.026 × Cap/1000) COP	
	< 65,000 Btu/h	95°F db/ 75°F wb outdoor air	9.0 EER	
SPVAC (cooling mode)	≥ 65,000 Btu/h and < 135,000 Btu/h	95°F db/ 75°F wb outdoor air	8.9 EER	
	≥ 135,000 Btu/h and < 240,000 Btu/h	95°F db/ 75°F wb outdoor air	8.6 EER	AHRI 390
	< 65,000 Btu/h	95°F db/ 75°F wb outdoor air	9.0 EER	ANN 390
SPVHP (cooling mode)	≥ 65,000 Btu/h and < 135,000 Btu/h	95°F db/ 75°F wb outdoor air	8.9 EER	
	≥ 135,000 Btu/h and < 240,000 Btu/h	95°F db/ 75°F wb outdoor air	8.6 EER	
	<65,000 Btu/h	47°F db/ 43°F wb outdoor air	3.0 COP	
SPVHP (heating mode)	≥ 65,000 Btu/h and < 135,000 Btu/h	47°F db/ 43°F wb outdoor air	3.0 COP	AHRI 390
(neuting mode)	≥ 135,000 Btu/h and < 240,000 Btu/h	47°F db/ 75°F wb outdoor air	2.9 COP	
	< 6,000 Btu/h	_	9.7 SEER	
	≥ 6,000 Btu/h and < 8,000 Btu/h		9.7 EER	-
Room air conditioners, with louvered sides	≥ 8,000 Btu/h and < 14,000 Btu/h	-	9.8 EER	
	≥ 14,000 Btu/h and < 20,000 Btu/h	_	9.7 SEER	
	≥ 20,000 Btu/h	_	8.5 EER	
Room air conditioners, with louvered sides	< 8,000 Btu/h	_	9.0 EER	ANSI/ AHAM RAC
	≥ 8,000 Btu/h and < 20,000 Btu/h	_	8.5 EER	
	≥ 20,000 Btu/h	—	8.5 EER	1
Room air-conditioner	< 20,000 Btu/h	_	9.0 EER	1
heat pumps with louvered sides	≥ 20,000 Btu/h	_	8.5 EER	1
Room air-conditioner	< 14,000 Btu/h	_	8.5 EER]
heat pumps without louvered sides	≥ 14,000 Btu/h		8.0 EER	1

TABLE C403.2.3(3)

(continued)

TABLE C403.2.3(3)—continued MINIMUM EFFICIENCY REQUIREMENTS: ELECTRICALLY OPERATED PACKAGED TERMINAL AIR CONDITIONERS, PACKAGED TERMINAL HEAT PUMPS, SINGLE-PACKAGE VERTICAL AIR CONDITIONERS, SINGLE VERTICAL HEAT PUMPS, ROOM AIR CONDITIONERS AND ROOM AIR-CONDITIONER HEAT PUMPS

EQUIPMENT TYPE	SIZE CATEGORY (INPUT)	SUBCATEGORY OR RATING CONDITION	MINIMUM EFFICIENCY	TEST PROCEDURE ^a
Room air conditioner casement only	All capacities	—	8.7 EER	ANSI/
Room air conditioner casement-slider	All capacities	—	9.5 EER	AHAM RAC-1

For SI: 1 British thermal unit per hour = 0.2931 W, $^{\circ}\text{C} = [(^{\circ}\text{F}) - 32]/1.8$, wb = wet bulb, db = wet bulb.

"Cap" = The rated cooling capacity of the project in Btu/h. Where the unit's capacity is less than 7000 Btu/h, use 7000 Btu/h in the calculation. Where the unit's capacity is greater than 15,000 Btu/h, use 15,000 Btu/h in the calculations.

a. Chapter 6 contains a complete specification of the referenced test procedure, including the referenced year version of the test procedure.

b. Replacement unit shall be factory labeled as follows: "MANUFACTURED FOR REPLACEMENT APPLICATIONS ONLY: NOT TO BE INSTALLED IN NEW CONSTRUCTION PROJECTS." Replacement efficiencies apply only to units with existing sleeves less than 16 inches (406 mm) in height and less than 42 inches (1067 mm) in width. Before January 1, 2015 the minimum

efficiency shall be 13.8 - (0.300 x Cap/1000) EER. d.

TABLE 403.2.3(4) WARM-AIR FURNACES AND COMBINATION WARM-AIR FURNACES/AIR-CONDITIONING UNITS, WARM-AIR DUCT FURNACES AND UNIT HEATERS, MINIMUM EFFICIENCY REQUIREMENTS

EQUIPMENT TYPE	SIZE CATEGORY (INPUT)	SUBCATEGORY OR RATING CONDITION	MINIMUM EFFICIENCY ^{d, e}	TEST PROCEDURE ^a
Warm-air furnaces, gas fired	< 225,000 Btu/h	-	78% AFUE or 80% <i>E</i> ^c _t	DOE 10 CFR Part 430 or ANSI Z21.47
gas meu	≥ 225,000 Btu/h	Maximum capacity ^c	$80\% E_{t}^{1}$	ANSI Z21.47
Warm-air furnaces, oil fired	< 225,000 Btu/h		78% AFUE or 80% <i>E</i> ^c	DOE 10 CFR Part 430 or UL 727
on mea	≥ 225,000 Btu/h	Maximum capacity ^b	$81\% E_t^g$	UL 727
Warm-air duct furnaces, gas fired	All capacities	Maximum capacity ^b	$80\% E_c$	ANSI Z83.8
Warm-air unit heaters, gas fired	All capacities	Maximum capacity ^b	$80\% E_c$	ANSI Z83.8
Warm-air unit heaters, oil fired	All capacities	Maximum capacity ^b	$80\% E_c$	UL 731

For SI: 1 British thermal unit per hour = 0.2931 W.

a. Chapter 6 contains a complete specification of the referenced test procedure, including the referenced year version of the test procedure.

b. Minimum and maximum ratings as provided for and allowed by the unit's controls.

c. Combination units not covered by the National Appliance Energy Conservation Act of 1987 (NAECA) (3-phase power or cooling capacity greater than or equal to 65,000 Btu/h [19 kW]) shall comply with either rating.

d. E_t = Thermal efficiency. See test procedure for detailed discussion.

e. E_c = Combustion efficiency (100% less flue losses). See test procedure for detailed discussion.

 $\vec{E}_c = \text{Combustion efficiency}$. Units shall also include an IID, have jackets not exceeding 0.75 percent of the input rating, and have either power venting or a flue damper. A vent damper is an acceptable alternative to a flue damper for those furnaces where combustion air is drawn from the conditioned space.

g. E_i = Thermal efficiency. Units shall also include an IID, have jacket losses not exceeding 0.75 percent of the input rating, and have either power venting or a flue damper. A vent damper is an acceptable alternative to a flue damper for those furnaces where combustion air is drawn from the conditioned space.

MINIMUM EFFICIENCY REQUIREMENTS: GAS- AND OIL-FIRED BOILERS								
EQUIPMENT TYPE ^a	SUBCATEGORY OR RATING CONDITION	SIZE CATEGORY (INPUT)	MINIMUM EFFICIENCY ^{d, e}	TEST PROCEDURE				
		< 300,000 Btu/h	80% AFUE	10 CFR Part 430				
	Gas-fired	≥ 300,000 Btu/h and ≤ 2,500,000 Btu/h ^b	80% E,	10 CFR Part 431				
Deilans het weten		> 2,500,000 Btu/hª	82% E _c					
Boilers, hot water		< 300,000 Btu/h	80% AFUE	10 CFR Part 430				
	Oil-fired ^c	≥ 300,000 Btu/h and ≤ 2,500,000 Btu/h ^b	82% E,	10 CFR Part 431				
		> 2,500,000 Btu/h ^a	84% E _c					
	Gas-fired	< 300,000 Btu/h	75% AFUE	10 CFR Part 430				
	Gas-fired- all, except natural draft	≥ 300,000 Btu/h and ≤ 2,500,000 Btu/h ^b	79% E,					
		> 2,500,000 Btu/h ^a	79% E _t	10 CFR Part 431				
Boilers, steam	Gas-fired-natural draft	≥ 300,000 Btu/h and ≤ 2,500,000 Btu/h ^b	77% E _r	10 CFR 1 at 451				
		> 2,500,000 Btu/h ^a	77% E _t					
		< 300,000 Btu/h	80% AFUE	10 CFR Part 430				
	Oil-fired ^c	≥ 300,000 Btu/h and ≤ 2,500,000 Btu/h ^b	81% E _t	10 CFR Part 431				
		> 2,500,000 Btu/hª	81% E _t					

TABLE C403.2.3(5)

For SI: 1 British thermal unit per hour = 0.2931 W.

a. These requirements apply to boilers with rated input of 8,000,000 Btu/h or less that are not packaged boilers and to all packaged boilers. Minimum efficiency requirements for boilers cover all capacities of packaged boilers.
b. Maximum capacity – minimum and maximum ratings as provided for and allowed by the unit's controls.
c. Includes oil-fired (residual).

d. E_i = Combustion efficiency (100 percent less fluc losses).
 e. E_i = Thermal efficiency. See referenced standard for detailed information.

TABLE C403.23(6) MINIMUM EFFICIENCY REQUIREMENTS: CONDENSING UNITS, ELECTRICALLY OPERATED						
EQUIPMENT TYPE	SIZE CATEGORY	MINIMUM EFFICIENCY ^b	TEST PROCEDURE [®]			
Condensing units, air cooled	≥ 135,000 Btu/h	10.1 EER 11.2 IPLV	AHRI 365			
Condensing units, water or evaporatively cooled	d ≥ 135,000 Btu/h	13.1 EER 13.1 IPLV	AIIX 505			

For SI: 1 British thermal unit per hour = 0.2931 W.

a. Chapter 6 contains a complete specification of the referenced test procedure, including the referenced year version of the test procedure.

b. IPLVs are only applicable to equipment with capacity modulation.

EQUIPMENT TYPE			BEFORE 1/1/2015		AS OF 1	1/1/2015	TEST
EQUIPMENT TYPE	SIZE CATEGORY	UNITS	Path A	Path B	Path A	Path B	PROCEDURE
	- 150 m		<u>≥ 9.562 FL</u>	NTA 6	≥10.100 FL	≥9.700 FL	
	< 159 Tons	EER	≥12.500 IPLV	NA*	≥13.700 IPLV	≥15,800 IPLV	
Air-cooled chillers		(Btu/W)	<u>≥ 9.562 FL</u>	27.1.6	≥10.100 FL	≥9.700 FL	
	\geq 150 Tons		≥12.500 IPLV	NA*	≥14.000 IPLV	≥16.100 IPLV	
Air cooled without condenser, electrically operated	All capacities	EER (Btu/W)			without cond rated with condensers an	ed chillers enser shall be matching nd complying oled chiller equirements.	
	<75 Tons		<u>≤ 0.780 FL</u>	<u>≤0.800 FL</u>	≤ 0.750 FL	≤ 0.780 FL	
	< /5 10ns		<u>≤0.630 IPLV</u>	<u>≤ 0.600 IPL</u> V	≤ 0.600 IPLV	$\leq 0.500 \text{ IPLV}$	
	\geq 75 tons and < 150 tons		<u>≤ 0.775 FL</u>	≤ 0.790 FL	≤ 0.720 FL	≤ 0.750 FL	
	\geq 75 tons and < 150 tons		<u>≤ 0.615 IPLV</u>	<u>≤0.586 IPLV</u>	≤ 0.560 IPLV	≤ 0.490 IPLV	
Water cooled, electrically	\geq 150 tons and < 300 tons	kW/ton	<u>≤ 0.680 FL</u>	≤0.718 FL	$\leq 0.660 \; \mathrm{FL}$	$\leq 0.680 \; \text{FL}$	AHRI 550/ 590
operated positive displacement	\geq 150 tons and < 500 tons		<u>≤0.580 IPL</u> V	<u>≤ 0.540 IPLV</u>	≤ 0.540 IPLV	≤ 0.440 IPLV	
-	\geq 300 tons and < 600 tons	tons	<u>≤ 0.620 FL</u>	≤0.639 FL	≤ 0.610 FL	$\leq 0.625 \; FL$	
	\geq 500 tons and < 600 tons		<u>≤0.540 IPLV</u>	≤ 0.490 IPLV	≤ 0.520 IPLV	$\leq 0.410 \text{ IPLV}$	
	> 600 tons		<u>≤ 0.620 FL</u>	≤0.639 FL	≤0.560 FL	≤0.585 FL	
	≥ 000 tons		<u>≤0.540 IPLV</u>	<u>≤0.490 IPLV</u>	\leq 0.500 IPLV	\leq 0.380 IPLV	
	≤ 150 Tons		<u>≤0.780 FL</u>	≤0.639 FL	≤0.610 FL	≤0.695 FL	
	≤ 150 1008		<u>≤0.630 IPLV</u>	$\leq 0.450 \text{IPLV}$	≤ 0.550 IPLV	\leq 0.440 IPLV	1
> 150 to a	> 150 tons and < 300 tons		<u>≤ 0.634 FL</u>	<u>≤ 0.639 FL</u>	$\leq 0.610 \; \text{FL}$	$\leq 0.635 \; FL$	
	\geq 150 tons and < 500 tons		<u>≤ 0.596 IPLV</u>	$\leq 0.450 \text{ IPLV}$	$\leq 0.550 \text{ IPLV}$	$\leq 0.400 \text{ IPLV}$	1
Water cooled, electrically	\geq 300 tons and < 400 tons	kW/ton	≤ 0.576 FL	<u>≤ 0.600 FL</u>	$\leq 0.560 \; FL$	≤ 0.595 FL	
operated centrifugal	\geq 500 tons and < 400 tons	K W/IOII	<u>≤ 0.549 IPLV</u>	$\leq 0.400 \text{ IPLV}$	$\leq 0.520 \text{ IPLV}$	$\leq 0.390 \text{ IPLV}$	
	\geq 400 tons and \leq 600 tons		<u>≤ 0.576 FL</u>	<u>≤0.600 FL</u>	$\leq 0.560 \; FL$	$\leq 0.585 \; FL$	
	\geq 400 tons and < 000 tons		<u>≤ 0.549 IPLV</u>	$\leq 0.400 \text{ IPLV}$	$\leq 0.500 \text{ IPLV}$	$\leq 0.380 \; IPLV$	
	≥ 600 Tons	r	<u>≤ 0.570 FL</u>	<u>≤0.590 FL</u>	$\leq 0.560 \; FL$	$\leq 0.585 \; FL$	
	2 000 1003		<u>≤0.539 IPLV</u>	<u>≤ 0.400 IPLV</u>	$\leq 0.500 \ IPLV$	\leq 0.380 IPLV	
Air cooled, absorption, single effect	All capacities	СОР	≥ 0.600 FL	NA ^e	$\geq 0.600 \; \mathrm{FL}$	NA ^c	
Water cooled absorption, single effect	All capacities	СОР	<u>≥ 0.700 FL</u>	NA ^e	\geq 0.700 FL	NA ^c	
Absorption, double effect, indirect fired	All capacities	COP	<u>≥ 1.000 FL</u> <u>≥ 1.050 IPLV</u>	NA ^e	≥ 1.000 FL ≥ 1.050 IPLV	NA ^c	AHRI 560
Absorption double effect direct_fired	All capacities	COP	≥ 1.000 FL > 1.000 IPLV	NA"	≥ 1.000 FL ≥ 1.050 IPLV	NA ^c	

a. The requirements for centrifugal chiller shall be adjusted for nonstandard rating conditions in accordance with Section C403.2.3.1 and are only applicable for the range of conditions listed in Section C403.2.3.1. The requirements for air-cooled, water-cooled positive displacement and absorption chillers are at standard rating conditions defined in the reference test procedure.
b. Both the full-load and IPLV requirements shall be met or exceeded to comply with this standard. Where there is a Path B, compliance can be with either Path A or Path B for any applicable for Path B and only Path A can be used for compliance.
c. NA means the requirements are not applicable for Path B and only Path A can be used for compliance.

d. FL represents the full-load performance requirements and IPLV the part-load performance requirements.

COMMERCIAL ENERGY EFFICIENCY C-48

r		HEAT REJECTION EQUIPMENT		1
EQUIPMENT TYPE*	TOTAL SYSTEM HEAT REJECTION CAPACITY AT RATED CONDITIONS	SUBCATEGORY OR RATING CONDITION	PERFORMANCE REQUIRED ^{b, c, d, g, h}	TEST PROCEDURE ^{e, f}
Propeller or axial fan open-circuit cooling towers	All	95°F entering water 85°F leaving water 75°F entering wb	\geq 40.2 gpm/hp	CTI ATC-105 and CTI STD-201
Centrifugal fan open-circuit cooling towers	All	95°F entering water 85°F leaving water 75°F entering wb	≥ 20.0 gpm/hp	CTI ATC-105 and CTI STD-201
Propeller or axial fan closed-circuit cooling towers	All	102°F entering water 90°F leaving water 75°F entering wb	≥ 14.0 gpm/hp	CTI ATC-105S and CTI STD-201
Centrifugal fan closed- circuit cooling towers	All	102°F entering water 90°F leaving water 75°F entering wb	≥ 7.0 gpm/hp	CTI ATC-105S and CTI STD-201
Propeller or axial fan evaporative condensers	All	Ammonia Test Fluid 140°F entering gas temperature 96.3°F condensing temperature 75°F entering wb	≥ 134,000 Btu/h·hp	CTI ATC-106
Centrifugal fan evaporative condensers	All	Ammonia Test Fluid 140°F entering gas temperature 96.3°F condensing temperature 75°F entering wb	≥ 110,000 Btu/h·hp	CTI ATC-106
Propeller or axial fan evaporative condensers	All	R-507A Test Fluid 165°F entering gas temperature 105°F condensing temperature 75°F entering wb	≥ 157,000 Btu/h·hp	CTI ATC-106
Centrifugal fan evaporative condensers	All	R-507A Test Fluid 165°F entering gas temperature 105°F condensing temperature 75°F entering wb	≥ 135,000 Btu/h·hp	CTI ATC-106
Air-cooled condensers	All	125°F Condensing Temperature 190°F Entering Gas Temperature 15°F subcooling 95°F entering db	≥ 176,000 Btu/h·hp	AHRI 460

TABLEC403.2.3(8)

For SI: C = [(°F)-32]/1.8, L/s · kW = (gpm/hp)/(11.83), COP = (Btu/h · hp)/(2550.7), db = dry bulb temperature, °F, wb = wet bulb temperature, °F, a. The efficiencies and test procedures for both open- and closed-circuit cooling towers are not applicable to hybrid cooling towers that contain a combination of wet and dry heat exchange sections.

b. For purposes of this table, open circuit cooling tower performance is defined as the water flow rating of the tower at the thermal rating condition listed in Table 403.2.3(8) divided by the fan nameplate-rated motor power.

a sole 40.2...(s) under by under by the ran nameplate-rated motor power. c. For purposes of this table, closed-circuit cooling tower performance is defined as the water flow rating of the tower at the thermal rating condition listed in Table 403.2.3(8) divided by the sum of the fan nameplate-rated motor power and the spray pump nameplate-rated motor power.

d. For purposes of this table, an cooled condenser performance is defined as the heat rejected from the refrigerant divided by the fan nameplate-rated motor power.

e. Chapter 6 contains a complete specification of the referenced test procedure, including the referenced year version of the test procedure. The certification requirements do not apply to field-erected cooling towers.

f. Where a certification program exists for a covered product and it includes provisions for verification and challenge of equipment efficiency ratings, then the product shall be listed in the certification program; or, where a certification program exists for a covered product, and it includes provisions for verification and challenge of equipment efficiency ratings, but the product is not listed in the existing certification program, the ratings shall be verified by an independent laboratory test report.

g. Cooling towers shall comply with the minimum efficiency listed in the table for that specific type of tower with the capacity effect of any project-specific accessories and/or options included in the capacity of the cooling tower h. For purposes of this table, evaporative condenser performance is defined as the heat rejected at the specified rating condition in the table divided by the sum

of the fan motor nameplate power and the integral spray pump nameplate power

i. Requirements for evaporative condensers are listed with ammonia (R-717) and R-507A as test fluids in the table. Evaporative condensers intended for use with halocarbon refrigerants other than R-507A shall meet the minimum efficiency requirements listed in this table with R-507A as the test fluid.

TABLE C403.2.3(9) MINIMUM EFFICIENCY AIR CONDITIONERS AND CONDENSING UNITS SERVING COMPUTER ROOMS					
EQUIPMENT TYPE	NET SENSIBLE COOLING CAPACITY ^a	MINIMUM SCOP-127 th EFFICIENCY DOWNFLOW UNITS / UPFLOW UNITS	TEST PROCEDURE		
Air conditioners, air cooled	65,000 Btu/h	2.20 / 2.09			
	≥ 65,000 Btu/h and < 240,000 Btu/h	2.10 / 1.99			
	≥ 240,000 Btu/h	1.90 / 1.79			
Air conditioners, water cooled	65,000 Btu/h	2.60 / 2.49			
	\geq 65,000 Btu/h and $<$ 240,000 Btu/h	2.50 / 2.39			
	≥ 240,000 Btu/h	2.40 /2.29			
Air conditioners, water cooled with fluid economizer	65,000 Btu/h	2.55 /2.44			
	\geq 65,000 Btu/h and $<$ 240,000 Btu/h	2.45 / 2.34	ANSI/ASHRAE 127		
	≥ 240,000 Btu/h	2.35 / 2.24			
Air conditioners, glycol cooled (rated at 40% propylene glycol)	65,000 Btu/h	2.50/2.39			
	\geq 65,000 Btu/h and $<$ 240,000 Btu/h	2.15 / 2.04			
	≥ 240,000 Btu/h	2.10 / 1.99			
Air conditioners, glycol cooled (rated at 40% propylene glycol) with fluid economizer	65,000 Btu/h	2.45 / 2.34			
	≥ 65,000 Btu/h and < 240,000 Btu/h	2.10/1.99			
	≥ 240,000 Btu/h	2.05 / 1.94			

For SI: 1 British thermal unit per hour = 0.2931 W.

a. Net sensible cooling capacity: the total gross cooling capacity less the latent cooling less the energy to the air movement system. (Total Gross - latent - Fan Power).

b. Sensible coefficient of performance (SCOP-127): a ratio calculated by dividing the net sensible cooling capacity in watts by the total power input in watts (excluding reheaters and humidifiers) at conditions defined in ASHRAE Standard 127. The net sensible cooling capacity is the gross sensible capacity minus the energy dissipated into the cooled space by the fan system.

TABLE C403.2.3(10)

HEATTRANSFEREQUIPMENT					
EQUIPMENT TYPE	SUBCATEGORY	MINIMUM EFFICIENCY	TEST PROCEDURE ^a		
Liquid-to-liquid heat exchangers	Plate type	NR	AHRI 400		

A

В

NR = No Requirement.

a. Chapter 6 contains a complete specification of the referenced test procedure, including the referenced year version of the test procedure.

C403.2.3.1 Water-cooled centrifugal chilling packages. Equipment not designed for operation at AHRI Standard 550/590 test conditions of 44°F (7°C) leaving chilled-water temperature and 2.4 gpm/ton evaporator fluid flow and 85°F (29°C) entering condenser water temperature with 3 gpm/ton (0.054 I/s • kW) condenser water flow shall have maximum full-load kW/ton (FL) and part-load ratings requirements adjusted using Equations 4-6 and 4-7.

$FL_{adj} = FL/K_{adj}$	(Equation 4-6)
$PLV_{adj} = IPLV/K_{adj}$	(Equation 4-7)

where:

 $K_{adj} = A \times B$

- FL = Full-load kW/ton value as specified in Table C403.2.3(7).
- *FL*_{adj} = Maximum full-load kW/ton rating, adjusted for nonstandard conditions.
- IPLV = Value as specified in Table C403.2.3(7).

- *PLV_{adj}* = Maximum *NPLV* rating, adjusted for nonstandard conditions.
 - $= 0.00000014592 \cdot (LIFT)^4 0.0000346496$
 - $(LIFT)^3$ + 0.00314196 $(LIFT)^2$ 0.147199 • (LIFT) + 3.9302

$$= 0.0015 \cdot L_{vg}E_{vap} + 0.934$$

$$LIFT = L_{vg}Cond - L_{vg}E_{vap}$$

- $L_{vg}Cond =$ Full-load condenser leaving fluid temperature (°F).
- $L_{vg}E_{vap}$ = Full-load evaporator leaving temperature (°F).

The FL_{adj} and PLV_{adj} values are only applicable for centrifugal chillers meeting all of the following full-load design ranges:

- 1. Minimum evaporator leaving temperature: 36°F.
- 2. Maximum condenser leaving temperature: $115^{\circ}F$.
- 3. $20^{\circ}F \le LIFT \le 80^{\circ}F$.

C403.2.3.2 Positive displacement (air- and watercooled) chilling packages. Equipment with a leaving fluid temperature higher than $32^{\circ}F$ (0°C) and watercooled positive displacement chilling packages with a condenser leaving fluid temperature below 115°F (46°C) shall meet the requirements of Table C403.2.3(7) when tested or certified with water at standard rating conditions, in accordance with the referenced test procedure.

C403.2.4 HVAC system controls. Each heating and cooling system shall be provided with thermostatic controls as specified in Section C403.2.4.1, C403.2.4.1.3, C403.2.4.2, C403.2.4.3, C403.3.1, C403.4, C403.4.1 or C403.4.4.

C403.2.4.1 Thermostatic controls. The supply of heating and cooling energy to each *zone* shall be controlled by individual thermostatic controls capable of responding to temperature within the *zone*. Where humidification or dehumidification or both is provided, at least one humidity control device shall be provided for each humidity control system.

Exception: Independent perimeter systems that are designed to offset only building envelope heat losses, gains or both serving one or more perimeter *zones* also served by an interior system provided:

- 1. The perimeter system includes at least one thermostatic control *zone* for each building exposure having exterior walls facing only one orientation (within +/-45 degrees) (0.8 rad) for more than 50 contiguous feet (15 240 mm); and
- 2. The perimeter system heating and cooling supply is controlled by thermostats located within the *zones* served by the system.

C403.2.4.1.1 Heat pump supplementary heat. Heat pumps having supplementary electric resistance heat are prohibited. Heat pumps having supplementary electric resistance heat shall have controls that, except during defrost, prevent supplementary heat operation where the heat pump can provide the heating load.

C403,2.4.1.2 Deadband. Where used to control both heating and cooling, *zone* thermostatic controls shall be capable of providing a temperature range or deadband of at least 5°F (2.8° C) within which the supply of heating and cooling energy to the *zone* is capable of being shut off or reduced to a minimum.

Exceptions:

- 1. Thermostats requiring manual changeover between heating and cooling modes.
- Occupancies or applications requiring precision in indoor temperature control as approved by the <u>code official</u> or authority having jurisdiction.

C403.2.4.1.3 Set point overlap restriction. Where a zone has a separate heating and a separate cooling thermostatic control located within the zone, a limit switch, mechanical stop or direct digital control system with software programming shall be provided

COMMERCIAL ENERGY EFFICIENCY

with the capability to prevent the heating set point from exceeding the cooling set point and to maintain a deadband in accordance with Section C403.2.4.1.2.

C403.2.4.2 Off-hour controls. Each *zone* shall be provided with thermostatic setback controls that are controlled by either an automatic time clock or programmable control system.

Exceptions:

- 1. Zones that will be operated continuously.
- 2. Zones with a full HVAC load demand not exceeding 6,800 Btu/h (2 kW) and having a readily accessible manual shutoff switch.

C403.2.4.2.1 Thermostatic setback capabilities. Thermostatic setback controls shall have the capability to set back or temporarily operate the system to maintain *zone* temperatures down to $55^{\circ}F(13^{\circ}C)$ or up to $85^{\circ}F(29^{\circ}C)$.

C403.2.4.2.2 Automatic setback and shutdown capabilities. Automatic time clock or programmable controls shall be capable of starting and stopping the system for seven different daily schedules per week and retaining their programming and time setting during a loss of power for at least 10 hours. Additionally, the controls shall have a manual override that allows temporary operation of the system for up to 2 hours; a manually operated timer capable of being adjusted to operate the system for up to 2 hours; or an occupancy sensor.

C403.2.4.2.3 Automatic start capabilities. Automatic start controls shall be provided for each HVAC system. The controls shall be capable of automatically adjusting the daily start time of the HVAC system in order to bring each space to the desired occupied temperature immediately prior to scheduled occupancy.

C403.2.4.3 Shutoff dampers. Outdoor air intake and exhaust openings and stairway and shaft vents shall be provided with Class I motorized dampers. The dampers shall have an ir leakage rate not greater than 4 cfm/ft² (20.3 L/s \cdot m²) of damper surface area at 1.0 inch water gauge (249 Pa) and shall be labeled by an approved agency when tested in accordance with AMCA 500D for such purpose.

Outdoor air intake and exhaust dampers shall be installed with automatic controls configured to close when the systems or spaces served are not in use or during unoccupied period warm-up and setback operation, unless the systems served require outdoor or exhaust air in accordance with the *International Mechanical Code* or the dampers are opened to provide intentional economizer cooling.

Stairway and shaft vent dampers shall be installed with automatic controls configured to open upon the activation of any fire alarm initiating device of the build-

2015 INTERNATIONAL ENERGY CONSERVATION CODE®

C-51

ing's fire alarm system or the interruption of power to the damper.

Exception: Gravity (nonmotorized) dampers shall be permitted to be used as follows:

- 1. In buildings less than three stories in height above grade plane.
- 2. In buildings of any height located in *Climate* Zones 1, 2 or 3.
- 3.2. Where the design exhaust capacity is not greater than 300 cfm (142 L/s).

Gravity (nonmotorized) dampers shall have an air leakage rate not greater than 20 cfm/ft² (101.6 L/s \cdot m²) where not less than 24 inches (610 mm) in either dimension and 40 cfm/ft² (203.2 L/s \cdot m²) where less than 24 inches (610 mm) in either dimension. The rate of air leakage shall be determined at 1.0 inch water gauge (249 Pa) when tested in accordance with AMCA 500D for such purpose. The dampers shall be labeled by an approved agency.

C403.2.4.4 Zone isolation. HVAC systems serving *zones* that are over 25,000 square feet (2323 m²) in floor area or that span more than one floor and are designed to operate or be occupied nonsimultaneously shall be divided into isolation areas. Each isolation areas shall be equipped with isolation devices and controls configured to automatically shut off the supply of conditioned air and outdoor air to and exhaust air from the isolation area. Each isolation area shall be controlled independently by a device meeting the requirements of Section C403.2.4.2.2. Central systems and plants shall be provided with controls and devices that will allow system and equipment operation for any length of time while serving only the smallest isolation area served by the system or plant.

Exceptions:

- Exhaust air and outdoor air connections to isolation areas where the fan system to which they connect is not greater than 5,000 cfm (2360 L/s).
- Exhaust airflow from a single isolation area of less than 10 percent of the design airflow of the exhaust system to which it connects.
- Isolation areas intended to operate continuously or intended to be inoperative only when all other isolation areas in a *zone* are inoperative.

C403.2.4.5 Snow- and ice-melt system controls. Snow- and ice-melting systems shall include automatic controls capable of shutting off the system when the pavement temperature is above 50° F (10° C) and no precipitation is falling and an automatic or manual control that will allow shutoff when the outdoor temperature is above 40° F (4° C).

C403.2.4.5.1 Snow- and ice-melt system supplemental energy. Hydronic systems shall supplement not less than 25 percent of the design snow and ice melting total annual consumption measured in Btu/ft2 (J/m2), energy per unit area. Electric systems shall supplement not less than 50 percent of the design snow and ice melt peak load demand. These requirements shall be supplied by one or both of the

following:

An onsite renewable energy system.
 A heat recovery system.

Exception: Emergency service ingress and egress.

C403.2.4.6 Freeze protection system controls. Freeze protection systems, such as heat tracing of outdoor pip- ing and heat exchangers, including self-regulating heat tracing, shall include automatic controls configured to shut off the systems when outdoor air temperatures are

above 40°F (4°C) or when the conditions of the pro- tected fluid will prevent freezing.

C403.2.4.7 Economizer fault detection and diagnos- tics (FDD). Air-cooled unitary direct-expansion units listed in Tables C403.2.3(1) through C403.2.3(3) and variable refrigerant flow (VRF) units that are equipped with an economizer in accordance with Section C403.3 shall include a fault detection and diagnostics (FDD) system complying with the following:

- The following temperature sensors shall be per- manently installed to monitor system operation:
 - 1.1. Outside air.
 - 1.2. Supply air.
 - 1.3. Return air.
- 2. Temperature sensors shall have an accuracy of

 $\pm 2^{\circ}$ F (1.1°C) over the range of 40°F to 80°F (4°C to 26.7°C).

- Refrigerant pressure sensors, where used, shall have an accuracy of ±3 percent of full scale.
- The unit controller shall be capable of providing system status by indicating the following;
 - 4.1. Free cooling available.
 - 4.2. Economizer enabled.
 - 4.3. Compressor enabled.

2015 INTERNATIONAL ENERGY CONSERVATION CODE

4.4. Heating enabled.

- 4.5. Mixed air low limit cycle active.
- 4.6. The current value of each sensor.
- 5. The unit controller shall be capable of manually initiating each operating mode so that the operation of compressors, economizers, fans and the heating system can be independently tested and verified.
- The unit shall be capable of reporting faults to a fault management application accessible by dayto-day operating or service personnel, or annunciated locally on zone thermostats.
- 7. The FDD system shall be capable of detecting the following faults:
 - 7.1. Air temperature sensor failure/fault.
 - 7.2. Not economizing when the unit should be economizing.
 - 7.3. Economizing when the unit should not be economizing.
 - 7.4. Damper not modulating.
 - 7.5. Excess outdoor air.

C403.2.5 Hot water boiler outdoor temperature setback control. Hot water boilers that supply heat to the building through one- or two-pipe heating systems shall have an outdoor setback control that lowers the boiler water temperature based on the outdoor temperature.

C403.2.6 Ventilation. Ventilation, either natural or mechanical, shall be provided in accordance with <u>ASHRAE</u> <u>Standard 62.1-2013, Chapter 4 of the</u>

International Mechanical Code. Where mechanical ventilation is provided, the system shall provide the capability to reduce the outdoor air supply to the minimum required by ASHRAE Standard 62.1-2013. by Chapter 4 of the International Mechanical Code The design professional shall utilize ventilation rates based on the expected occupancy level of the space. Life safety maximum allowable occupancy density shall not be used as a ventilation basis of design.

C403.2.6.1 Demand controlled ventilation. Demand control ventilation (DCV) shall be provided for spaces meeting the following three criteria:

- 1. Spaces larger than 500 square feet (46.5 m²), and
- 2. Spaces with an average occupant load of 25 people per 1,000 square feet (93 m²) of floor area (as established in Table 403.3 of the *Inter- national Mechanical Code*), and
- Spaces served by systems with one or more of the following:
 - <u>+</u>.i. __An air-side economizer.
 - 2.<u>ii.</u> Automatic modulating control of the outdoor air damper.
- 3.<u>iii.</u> A design outdoor airflow greater than 3,000 cfm (1416 L/s).

Exception: Demand control ventilation is not required for systems and spaces as follows:

- 1. Systems with energy recovery complying with Section C403.2.7.
- Multiple-zone systems without direct digital control of individual zones communicating with a central control panel.
- 3. Systems with a design outdoor airflow less than 1,200 cfm (566 L/s).
- Spaces where the supply airflow rate minus any makeup or outgoing transfer air requirement is less than 1,200 cfm (566 L/s).

i.<u>5.</u> Ventilation provided for process loads only.

C403.2.6.2 Enclosed parking garage ventilation controls. Enclosed parking garages used for storing or handling automobiles operating under their own power shall employ contamination-sensing devices and automatic controls configured to stage fans or modulate fan average airflow rates to 50 percent or less of design capacity, or intermittently operate fans less than 20 percent of the occupied time or as required to maintain acceptable contaminant levels in accordance with *International Mechanical Code ASHRAE Standard* 62.1-2013_provisions, Failure of contamination sensing devices shall cause the exhaust fans to operate continuously at design airflow.

Exceptions:

 Garages with a total exhaust capacity less than 22,500 cfm (10 620 L/s) with ventilation systems that do not utilize heating or mechanical cooling.

 Garages that have a garage area to ventilation system motor nameplate power ratio that exceeds 1125 cfm/hp (710 L/s/kW) and do not utilize heating or mechanical cooling.

C403.2.7 Energy recovery ventilation systems. Where the supply airflow rate of a fan system exceeds the values specified in Tables C403.2.7(1) and C403.2.7(2), the system shall include an energy recovery system. The energy recovery system shall have the capability to provide a change in the enthalpy of the outdoor air supply of not less than 50 percent of the difference between the outdoor air

TABLE C403.2.7(1) ENERGY RECOVERY REQUIREMENT (Ventilation systems operating less than 8,000 hours per year) PERCENT (%) OUTDOOR AIR AT FULL DESIGN AIRFLOW RATE ≥ 40% and · ≥ 50% and -≥ 60% and 70% 70% and CLIMATE ZONE ≥ 10% and < 20% ≥ 20% and < 30% \geq 30% and < 40% ≥ 80% 50% 60% 80% DESIGN SUPPLY FAN AIRFLOW RATE (cfm 3B, 3C, 4B, 4C, 5B NR NR NR NR NR NR NR 1B, 2B, 5C NR NR ≥ 26,000 ≥ 12,000 ≥ 5,000 ≥4,000 NR NR ≥ 28,000 ≥ 26,5000 ≥ 11,000 ≥ 5,500 ≥ 4,500 ≥ 3,500 ≥ 2,500 6B ≥ 1,500 1A, 2A, 3A, 4A, ≥ 5,500 ≥ 3,500 ≥ 2,000 $\geq 1,000$ ≥ 26,000 $\geq 16,000$ $\geq 4,500$ >0 <mark>5A,</mark> 6A ≥ 4,500 ≥ 4,000 ≥ 2,500 78 >1.000> 0> 0> 0>0

For SI: 1 cfm = 0.4719 L/s.NR = Not Required.

TABLE C403.2.7(2)
ENERGYRECOVERYREQUÍREMENT
(Ventilation systems operating not less than 8,000 hours per year)
PERCENT (%) OUTDOOR AIR AT FULL DESIGN AIRFLOW RATE

L

	CLIMATE ZONE	≥ 10% and < 20%	≥ 20% and < 30%	≥ 30% and < 40%	≥ 40% and < 50%	≥ 50% and < 60%	≥ 60% and < 70%	≥ 70% and < 80%	≥80%
				De	sign Supply Fan	Airflow Rate (cf	m)		
	3C	NR	NR	NR	NR	NR	NR	NR	NR
1	1B, 2B, 3B, 4C, 5C	NR	<u>≥ 19,500</u>	<u>≥9,000</u>	<u>≥ 5,000</u>	<u>≥4,000</u>	<u>≥ 3,000</u>	<u>≥ 1,500</u>	>0
	1A, 2A, 3A, 4B, 5B	<u>≥ 2,500</u>	<u>≥ 2,000</u>	<u>≥1,000</u>	<u>≥ 500</u>	>0	>0	>0	>0
1	4 A, 5A, 6 A , 6B, 7, 8	>0	>0	>0	>0	>0	>0	>0	>0

For SI: 1 cfm = 0.4719 L/s. NR = Not required

L

2015 INTERNATIONAL ENERGY CONSERVATION CODE®

C-53

and return air enthalpies, at design conditions. Where an air economizer is required, the energy recovery system shall include a bypass or controls which permit operation of the economizer as required by Section C403.3.

Exception: An energy recovery ventilation system shall not be required in any of the following conditions:

- 1. Where energy recovery systems are prohibited by the *International Mechanical Code*.
- 2. Laboratory fume hood systems that include at least one of the following features:
 - 2.1. Variable-air-volume hood exhaust and room supply systems capable of reducing exhaust and makeup air volume to 50 percent or less of design values.
 - 2.2. Direct makeup (auxiliary) air supply equal to at least 75 percent of the exhaust rate, heated not warmer than 2°F (1.1°C) above room setpoint, cooled to not cooler than 3°F (1.7°C) below room setpoint, no humidification added, and no simultaneous heating and cooling used for dehumidification control.
- 3. Systems serving spaces that are heated to less than 60°F (15.5°C) and are not cooled.
- Where more than 60 percent of the outdoor heating energy is provided from site-recovered or site solar energy.
- 5. Heating energy recovery in Climate Zones 1 and 2.
- 6. Cooling energy recovery in *Climate Zones* 3C, 4C, 5B, 5C, 6B, 7 and 8.
- 7.5. Systems requiring dehumidification that employ energy recovery in series with the cooling coil.
- 8.6. Where the largest source of air exhausted at a sin- gle location at the building exterior is less than 75 percent of the design *outdoor air* flow rate.
- 9.7. Systems expected to operate less than 20 hours per week at the *outdoor air* percentage covered by Table C403.2.7(1).
- <u>10.8</u>. Systems exhausting toxic, flammable, paint or corrosive fumes or dust.

<u>H+9.</u> Commercial kitchen hoods used for collecting and removing grease vapors and smoke.

C403.2.8 Kitchen exhaust systems. Replacement air introduced directly into the exhaust hood cavity shall not be greater than 10 percent of the hood exhaust airflow rate. Conditioned supply air delivered to any space shall not exceed the greater of the following:

- The ventilation rate required to meet the space heating or cooling load.
- 2. The hood exhaust flow minus the available transfer air from adjacent space where available transfer air is considered that portion of outdoor ventilation air not required to satisfy other exhaust needs, such as restrooms, and not required to maintain pressurization of adjacent spaces.

Where total kitchen hood exhaust airflow rate is greater than 5,000 cfm (2360 L/s), each hood shall be a factorybuilt commercial exhaust hood listed by a nationally recognized testing laboratory in compliance with UL 710. Each hood shall have a maximum exhaust rate as specified in Table C403,2.8 and shall comply with one of the following:

- Not less than 50 percent of all replacement air shall be transfer air that would otherwise be exhausted.
- Demand ventilation systems on not less than 75 percent of the exhaust air that are capable of not less than a 50-percent reduction in exhaust and replacement air system airflow rates, including controls necessary to modulate airflow in response to appliance operation and to maintain full capture and containment of smoke, effluent and combustion products during cooking and idle.
- Listed energy recovery devices with a sensible heat recovery effectiveness of not less than 40 percent on not less than 50 percent of the total exhaust airflow.

Where a single hood, or hood section, is installed over appliances with different duty ratings, the maximum allowable flow rate for the hood or hood section shall be based on the requirements for the highest appliance duty rating under the hood or hood section.

Exception: Where not less than 75 percent of all the replacement air is transfer air that would otherwise be exhausted

CFM PER LINEAR FOOT OF HOOD LENGTH TYPE OF HOOD LIGHT-DUTY MEDIUM-DUTY HEAVY- E GUIPMENT EQUIPMENT DUTY DUTY							
Wall-mounted canopy	140	210	280	EQUIPMENT 385			
Single island	280	350	420	490			
Double island (per side)	175	210	280	385			
Eyebrow	175	175	NA	NA			
Backshelf/Pass-over	210	210	280	NA			

TABLE C403.2.8

For SI: 1 cfm = 0.4719 L/s; 1 foot = 305 mm.

NA = Not Allowed.

C403.2.9 Roof-top unit, duct and plenum insulation and sealing. Packaged and built-up air-moving equipment placed outdoors (e.g., rooftop units) shall have minimum wall insulation values of R-8. Sup- ply and return air ducts and plenums shall be insulated with a minimum of R-6-8 insulation where located in unconditioned spaces and where located outside the building with aminimum of R-8 insulation in Climate Zones 1 through 4 and-a minimum of R-12 insulation in Climate Zones 5 through 8. Where located within a building envelope assembly, the duct or plenum shall be separated from the building exterior or unconditioned or exempt spaces by a minimum of R 8 ins ulation in *Climate Zones* 1 through 4 and a minimum of R-12 insulation in *Climate Zones* 5 through 8.

Exceptions:

- 1. Where located within equipment.
- 2. Where the design temperature difference between the interior and exterior of the duct or plenum is not greater than 15°F (8°C).

Ducts, air handlers and filter boxes shall be sealed. Joints and seams shall comply with Section 603.9 of the International Mechanical Code.

C403.2.9.1 Duct construction. Ductwork shall be constructed and erected in accordance with the International Mechanical Code.

C403.2.9.1.1 Low-pressure duct systems. Longitudinal and transverse joints, seams and connections of supply and return ducts operating at a static pressure less than or equal to 2 inches water gauge (w.g.) (498 Pa) shall be securely fastened and sealed with welds, gaskets, mastics (adhesives), mastic-plus-embeddedfabric systems or tapes installed in accordance with the manufacturer's instructions. Pressure classifications specific to the duct system shall be clearly indicated on the construction documents in accordance with the International Mechanical Code.

Exception: Locking-type longitudinal joints and seams, other than the snap-lock and button-lock types, need not be sealed as specified in this section

C403.2.9.1.2 Medium-pressure duct systems. Ducts and plenums designed to operate at a static pressure greater than 2 inches water gauge (w.g.) (498 Pa) but less than 3 inches w.g. (747 Pa) shall be insulated and sealed in accordance with Section C403.2.9. Pressure classifications specific to the duct system shall be clearly indicated on the construction documents in accordance with the International Mechanical Code.

C403.2.9.1.3 High-pressure duct systems. Ducts and plenums designed to operate at static pressures greater than 3 inches water gauge (747 Pa) shall be insulated and sealed in accordance with Section C403.2.8. In addition, ducts and plenums shall be leak tested in accordance with the SMACNA HVAC Air Duct Leakage Test Manual and shown to have a

rate of air leakage (CL) less than or equal to 4.0 as determined in accordance with Equation 4-8.

(Equation 4-8)

CL = F/P

- F = The measured leakage rate in cfm per 100 square feet of duct surface.
- P = The static pressure of the test.

Documentation shall be furnished by the designer demonstrating that representative sections totaling at least 25 percent of the duct area have been tested and that all tested sections comply with the requirements of this section.

C403.2.10 Piping insulation. Piping serving as part of a heating or cooling system shall be thermally insulated in accordance with Table C403.2.10.

Exceptions:

where:

- 1. Factory-installed piping within HVAC equipment tested and rated in accordance with a test procedure referenced by this code.
- 2. Factory-installed piping within room fan-coils and unit ventilators tested and rated according to AHRI 440 (except that the sampling and variation provisions of Section 6.5 shall not apply) and AHRI 840, respectively.
- 3. Piping that conveys fluids that have a design operating temperature range between 60°F (15°C) and 105°F (41°C).
- 4. Piping that conveys fluids that have not been heated or cooled through the use of fossil fuels or electric power.
- 5. Strainers, control valves, and balancing valves associated with piping 1 inch (25 mm) or less in diameter.
- 6. Direct buried piping that conveys fluids at or below 60°F (15°C).

C403.2.11 Mechanical systems commissioning and completion requirements. Mechanical systems shall be commissioned and completed in accordance with Section C408.2.

C403.2.12 Air system design and control. Each HVAC system having a total fan system motor nameplate horsepower (hp) exceeding 5 hp (3.7 kW) shall comply with the provisions of Sections C403.2.12.1 through C403.2.12.3.

C403.2.12.1 Allowable fan floor horsepower. Each HVAC system at fan system design conditions shall not exceed the allowable fan system motor nameplate hp (Option 1) or fan system bhp (Option 2) as shown in Table C403.2.12.1(1). This includes supply fans, exhaust fans, return/relief fans, and fan-powered terminal units associated with systems providing heating or cooling capability.

Comment [NAV11]: Stakeholder input needed for language and applicability/feasibility. Added per submitted public comment.

Comment [NAV12]: Stakeholder input needed: Need to consider applicability of 2011 CBES Cx requirements with this new Cx section C408.2

2015 INTERNATIONAL ENERGY CONSERVATION CODE®

C-55

TABLE C403.2.1°	
MINIMUM PIPE INSULATION THICKNESS	(in inches)ª

FLUID OPERATING			NOMINAL PIPE OR TUBE SIZ			IZE (inches)	ZE (inches)	
TEMPERATURE RANGE AND USAGE (°F)	Conductivity Btu · in./(h · ft² · °F)⁵-	Mean Rating Temperature, °F	< 1	1 to $< 1^{1}I_{2}$	$1^{1}I_{2}$ to < 4	4 to < 8	≤ 8	
> 350	0.32 - 0.34	250	4.5	5.0	5.0	5.0	5.0	
251 - 350	0.29 - 0.32	200	3.0	4.0	4.5	4.5	4.5	
201 - 250	0.27 - 0.30	150	2.5	2.5	2.5	3.0	3.0	
141 - 200	0.25 - 0.29	125	1.5	1.5	2.0	2.0	2.0	
105 - 140	0.21 - 0.28	100	1.0	1.0	1.5	1.5	1.5	
40 - 60	0.21 - 0.27	75	0.5	0.5	1.0	1.0	1.0	
< 40	0.20 - 0.26	50	0.5	1.0	1.0	1.0	1.5	

For SI: 1 inch = 25.4 mm, °C = $[(^{\circ}F) - 32]/1.8$.

a. For piping smaller than 1¹/ inches and located in partitions within conditioned spaces, reduction of these thicknesses by 1 inch shall be permitted (before thickness adjustment required in footnote b) but not to a thickness less than 1 inch.

b. For insulation outside the stated conductivity range, the minimum thickness (T) shall be determined as follows:

 $T = r\{(1 + t/r)K/k - 1\}$

where:

T = minimum insulation thickness,

r =actual outside radius of pipe.

t = insulation thickness listed in the table for applicable fluid temperature and pipe size,

N

K = conductivity of alternate material at mean rating temperature indicated for the applicable fluid temperature (Btu • in/h • ft² • °F) and

k = the upper value of the conductivity range listed in the table for the applicable fluid temperature.

c. For direct-buried heating and hot water system piping, reduction of these thicknesses by 1¹/ inches (38 mm) shall be permitted (before thickness adjustment required in footnote b but not to thicknesses less than 1 inch (25 mm).

Single-*zone* variable air volume systems shall comply with the constant volume fan power limitation.

Exceptions:

- Hospital, vivarium and laboratory systems that utilize flow control devices on exhaust or return to maintain space pressure relationships necessary for occupant health and safety or environmental control shall be permitted to use variable volume fan power limitation.
- 2. Individual exhaust fans with motor nameplate horsepower of 1 hp (0.746 kW) or less are exempt from the allowable fan horsepower requirement.

C403.2.12.2 Motor nameplate horsepower. For each fan, the fan brake horsepower shall be indicated on the construction documents and the selected motor shall be not larger than the first available motor size greater than the following:

- 1. For fans less than 6 bhp (4413 W), 1.5 times the fan brake horsepower.
- 2. For fans 6 bhp (4413 W) and larger, 1.3 times the fan brake horsepower.
- 3. Systems complying with Section C403.2.12.1 fan system motor nameplate hp (Option 1).

C403.2.12.3 Fan efficiency. Fans shall have a fan efficiency grade (FEG) of not less than 67 when determined in accordance with AMCA 205 by an *approved*, independent testing laboratory and labeled by the manufacturer. The total efficiency of the fan at the design

point of operation shall be within 15 percentage points of the maximum total efficiency of the fan.

Exception: The following fans are not required to have a fan efficiency grade:

1. Fans of 5 hp (3.7 kW) or less as follows:

- Single fan with a motor nameplate horsepower of 5 hp (3.7 kW) or less, unless Exception 1.2 applies.
- 1.2. Multiple fans in series or parallel that have a combined motor nameplate horsepower of 5 hp (3.7 kW) or less and are operated as the functional equivalent of a single fan.
- 2. Fans that are part of equipment covered under Section C403.2.3.
- Fans included in an equipment package certified by an *approved agency* for air or energy performance.
- 4. Powered wall/roof ventilators.
- 5. Fans outside the scope of AMCA 205.
- 6. Fans that are intended to operate only during emergency conditions.

C403.2.13 Heating outside a building. Systems installed to provide heat outside a building shall be radiant systems. Electric resistance heating is prohibited for heating spaces outside a building.

Exception: Electric resistance heating systems heated with a renewable fuel source.

Such heating systems shall be controlled by an occupancy sensing device or a timer switch, so that the system is automatically deenergized when no occupants are present.

TABLE C403.2.12.1(1) FAN POWER LIMITATION

	LIMIT	CONSTANT VOLUME	VARIABLE VOLUME			
Option 1: Fan system motor nameplate hp	Allowable nameplate motor hp	$hp \le CFM_s \cdot 0.0011$	$hp \le CFM_s \cdot 0.0015$			
Option 2: Fan system bhp	Allowable fan system bhp	$bhp \le CFM_s \cdot 0.00094 + A$	$bhp \le CFM_s \cdot 0.0013 + A$			

For SI: 1 bhp = 735.5 W, 1 hp = 745.5 W, 1 cfm = 0.4719 L/s.

where:

CFM_s = The maximum design supply airflow rate to conditioned spaces served by the system in cubic feet per minute. hp = The maximum combined motor nameplate horsepower. Bhp = The maximum combined fan brake horsepower.

= Sum of $[PD \times CFM_{D} / 4131]$ Α

where:

PD = Each applicable pressure drop adjustment from Table C403.2.12.1(2) in. w.c.

 CFM_{D} = The design airflow through each applicable device from Table C403.2.12.1(2) in cubic feet per minute.

TABLE C403.2.12.1(2) FAN POWER LIMITATION PRESSURE DROP ADJUSTMENT

DEVICE	ADJUSTMENT		
	Credits		
Fully ducted return and/or exhaust air systems	0.5 inch w.c. (2.15 in w.c. for laboratory and vivarium systems)		
Return and/or exhaust airflow control devices	0.5 inch w.c.		
Exhaust filters, scrubbers or other exhaust treatment	The pressure drop of device calculated at fan system design condition		
Particulate filtration credit: MERV 9 thru 12	0.5 inch w.c.		
Particulate filtration credit: MERV 13 thru 15	0.9 inch. w.c.		
Particulate filtration credit: MERV 16 and greater and electronically enhanced filters	Pressure drop calculated at 2x clean filter pressure drop at fan system design condition.		
Carbon and other gas-phase air cleaners	Clean filter pressure drop at fan system design condition.		
Biosafety cabinet	Pressure drop of device at fan system design condition.		
Energy recovery device, other than coil runaround loop	$(2.2 \times \text{energy recovery effectiveness}) - 0.5$ inch w.c. for each airstream.		
Coil runaround loop	0.6 inch w.c. for each airstream.		
Evaporative humidifier/cooler in series with another cooling coil	Pressure drop of device at fan system design conditions.		
Sound attenuation section (fans serving spaces with design background noise goals below NC35)	0.15 inch w.c.		
Exhaust system serving fume hoods	0.35 inch w.c.		
Laboratory and vivarium exhaust systems in high-rise buildings	0.25 inch w.c./100 feet of vertical duct exceeding 75 feet.		
	Deductions		
Systems without central cooling device	- 0.6 in. w.c.		
Systems without central heating device	- 0.3 in. w.c.		
Systems with central electric resistance heat	- 0.2 in. w.c.		
For SI: 1 inch w $c = 249$ Pa Linch = 25.4 mm			

For SI: 1 inch w.c. = 249 Pa, 1 inch = 25.4 mm. w.c. = water column, NC = Noise criterion.

AHRI 1200

C403.2.14 Refrigeration equipment performance. Refrigeration equipment shall have an energy use in kWh/day not greater than the values of Tables C403.2.14(1) and C403.2.14(2) when tested and rated in accordance with AHRI Standard 1200. The energy use

shall be verified through certification under an approved certification program or, where a certification program does not exist, the energy use shall be supported by data furnished by the equipment manufacturer.

TABLE C403.2.14(1) MINIMUM EFFICIENCY REQUIREMENTS: COMMERCIAL REFRIGERATION						
EQUIPMENT TYPE	APPLICATION	ENERGY USE LIMITS (kWh per day) ^a	TEST PROCEDURE			
Refrigerator with solid doors		0.10 · V + 2.04				
Refrigerator with transparent doors		0.12 · V + 3.34				
Freezers with solid doors	Holding Temperature	$0.40 \cdot V + 1.38$	AHRI 1200			
Freezers with transparent doors		0.75 • V + 4.10	AIIKI 1200			
Refrigerators/freezers with solid doors		the greater of 0.12 • V + 3.34 or 0.70				
Commercial refrigerators	Pulldown	0.126 • V + 3.51				

a. V = volume of the chiller or frozen compartment as defined in AHAM-HRF-1.

MINIMUM EFFICIENCY REQUIREMEN AL REFRIGERATORS AND FREEZERS S: COMMER(EQUIPMENT TYPE ENERGY USE LIMITS (kWh/day)^{a,b} TEST PROCEDURE Equipment Class Family Code **Operating Mode Rating Temperature** VOP.RC.M 0.82 · TDA + 4.07 Remote condensing Vertical open Medium SVO.RC.M 0.83 • TDA + 3.18 Semivertical open Remote condensing Medium Medium HZO.RC.M Horizontal open Remote condensing 0.35 • TDA + 2.88 VOP.RC.L Remote condensing Low Vertical open 2.27 • TDA + 6.85 HZO.RC.L Horizontal open Low Remote condensing $0.57 \boldsymbol{\cdot} \text{TDA} + 6.88$ Vertical VCT.RC.M 0.22 TDA + 1.95Remote condensing Medium transparent door Vertical VCT.RC.L 0.56 · TDA + 2.61 Remote condensing Low transparent door Service SOC.RC.M Remote condensing Medium $0.51 \boldsymbol{\cdot} TDA + 0.11$ over counter VOP.SC.M Vertical open Self-contained Medium 1.74 • TDA + 4.71 SVO.SC.M Semivertical open Self-contained Medium 1.73 • TDA + 4.59 HZO.SC.M Horizontal open Self-contained Medium 0.77 • TDA + 5.55

Low

Ice cream

Ice cream

Ice cream

Low

Ice cream

Ice cream

Ice cream

Ice cream

Self-contained

Self-contained

Self-contained

Self-contained

Remote condensing

Remote condensing

Remote condensing

Remote condensing

Remote condensing

TABLEC403.2.14(2)

Remote condensing	Medium
(contin	ued)

2015 INTERNATIONAL ENERGY CONSERVATION CODE®

1.92 • TDA + 7.08

0.67 • TDA + 3.29

 $0.38 \boldsymbol{\cdot} V + 0.88$

0.56 • TDA + 0.43

2.27 • TDA + 6.85

2.89 • TDA + 8.7

2.89 • TDA + 8.7

0.72 · TDA + 8.74

0.66 • TDA + 3.05

 $0.16 \boldsymbol{\cdot} TDA + 0.13$

HZO.SC.L

VCT.SC.I

VCS.SC.I

HCT.SC.I

SVO.RC.L

VOP RC I

SVO.RC.I

HZO.RC.I

VCT.RC.I

HCT.RC.M

Horizontal open

Vertical

transparent door

Vertical solid door

Horizontal

transparent door

Semivertical open

Vertical open

Semivertical open

Horizontal open

Vertical transparent

door Horizontal

transparent door

TABLE C403.2.14(2)—continued MINIMUM EFFICIENCY REQUIREMENTS: COMMERCIAL REFRIGERATORS AND FREEZERS							
	EQUIPMENT TYPE ENERGY USE LIMITS						
Equipment Class ^c Family Code		Operating Mode	Rating Temperature	(kWh/day) ^{s,b}	PROCEDURE		
HCT.RC.L	Horizontal transparent door	Remote condensing	Low	0.34 • TDA + 0.26			
HCT.RC.I	Horizontal transparent door	Remote condensing	Ice cream	0.4 • TDA + 0.31			
VCS.RC.M	Vertical solid door	Remote condensing	Medium	0.11 • V + 0.26			
VCS.RC.L	Vertical solid door	Remote condensing	Low	$0.23 \cdot V + 0.54$			
VCS.RC.I	Vertical solid door	Remote condensing	Ice cream	0.27 • V + 0.63			
HCS.RC.M	Horizontal solid door	Remote condensing	Medium	0.11 · V + 0.26			
HCS.RC.L	Horizontal solid door	Remote condensing	Low	0.23 · V + 0.54			
HCS.RC.I	Horizontal solid door	Remote condensing	Ice cream	$0.27 \cdot V + 0.63$			
HCS.RC.I	Horizontal solid door	Remote condensing	Ice cream	0.27 • V + 0.63	AHRI 1200		
SOC.RC.L	Service over counter	Remote condensing	Low	1.08 • TDA + 0.22			
SOC.RC.I	Service over counter	Remote condensing	Ice cream	1.26 • TDA + 0.26			
VOP.SC.L	Vertical open	Self-contained	Low	4.37 • TDA + 11.82			
VOP.SC.I	Vertical open	Self-contained	Ice cream.	5.55 • TDA + 15.02			
SVO.SC.L	Semivertical open	Self-contained	Low	4.34 • TDA + 11.51			
SVO.SC.I	Semivertical open	Self-contained	Ice cream	5.52 • TDA + 14.63	1		
HZO.SC.I	Horizontal open	Self-contained	Ice cream	2.44 • TDA + 9.0			
SOC.SC.I	Service over counter	Self-contained	Ice cream	1.76 • TDA + 0.36	1		
HCS.SC.I	Horizontal solid door	Self-contained	Ice cream	0.38 • V + 0.88	1		

a. V = Volume of the case, as measured in accordance with Appendix C of AHRI 1200.
 b. TDA = Total display area of the case, as measured in accordance with Appendix D of AHRI 1200.
 c. Equipment class designations consist of a combination [(in sequential order separated by periods (AAA).(BB).(C))] of: (AAA) An equipment family code where: VOP = vertical open \$VO = semivertical open HZO = horizontal open VCT = vertical transparent doors

- VCT = vertical transparent doors VCS = vertical solid doors HCT = horizontal transparent doors HCS = horizontal solid doors
- SOC = service over counter
- An operating mode code: (BB)
- RC = remote condensing SC = self-contained
- (C) A rating temperature code:
 - M = medium temperature (38°F)
 - L = low temperature (0°F) Ι
 - = ice-cream temperature (15°F)
- For example, "VOP.RC.M" refers to the "vertical-open, remote-condensing, medium-temperature" equipment class.

C403.2.15 Walk-in coolers, walk-in freezers, refrigerated warehouse coolers and refrigerated warehouse freezers. *Refrigerated warehouse coolers* and *refrigerated warehouse freezers* shall comply with this section. *Walk-in coolers* and *walk-in freezers* that are not either site assembled or site constructed shall comply with the following:

 Be equipped with automatic door-closers that firmly close walk-in doors that have been closed to within 1 inch (25 mm) of full closure.

Exception: Automatic closers are not required for doors more than 45 inches (1143 mm) in width or more than 7 feet (2134 mm) in height.

- Doorways shall have strip doors, curtains, springhinged doors or other method of minimizing infiltration when doors are open.
- 3. Walk-in coolers and refrigerated warehouse coolers shall contain wall, ceiling, and door insulation of not less than R-25 and walk-in freezers and refrigerated warehouse freezers shall contain wall, ceiling and door insulation of not less than R-32.

Exception: Glazed portions of doors or structural members need not be insulated.

- Walk-in freezers shall contain floor insulation of not less than R-28.
- Transparent reach-in doors for walk-in freezers and windows in walk-in freezer doors shall be of triple-pane glass, either filled with inert gas or with heat-reflective treated glass.
- Windows and transparent reach-in doors for walkin coolers doors shall be of double-pane or triplepane, inert gas-filled, heat-reflective treated glass.
- Evaporator fan motors that are less than 1 hp (0.746 kW) and less than 460 volts shall use electronically commutated motors, brushless directcurrent motors, or 3-phase motors.
- Condenser fan motors that are less than 1 hp (0.746 kW) shall use electronically commutated motors, permanent split capacitor-type motors or 3-phase motors.
- 9. Where antisweat heaters without antisweat heater controls are provided, they shall have a total door rail, glass and frame heater power draw of not more than 7.1 W/ft² (76 W/m²) of door opening for walk-in freezers and 3.0 W/ft² (32 W/m²) of door opening for walk-in coolers.
- 10. Where antisweat heater controls are provided, they shall reduce the energy use of the antisweat heater as a function of the relative humidity in the air outside the door or to the condensation on the inner glass pane.
- 11. Lights in walk-in coolers, walk-in freezers, refrigerated warehouse coolers and refrigerated warehouse freezers shall either use light sources with an efficacy of not less than 40 lumens per watt, including ballast losses, or shall use light sources

with an efficacy of not less than 40 lumens per watt, including ballast losses, in conjunction with a device that turns off the lights within 15 minutes when the space is not occupied.

C403.2.16 Walk-in coolers and walk-in freezers. Siteassembled or site-constructed walk-in coolers and walk-in freezers shall comply with the following:

1. Automatic door closers shall be provided that fully close walk-in doors that have been closed to within 1 inch (25 mm) of full closure.

Exception: Closers are not required for doors more than 45 inches (1143 mm) in width or more than 7 feet (2134 mm) in height.

- Doorways shall be provided with strip doors, curtains, spring-hinged doors or other method of minimizing infiltration when the doors are open.
- Walls shall be provided with insulation having a thermal resistance of not less than R-25, ceilings shall be provided with insulation having a thermal resistance of not less than R-25 and doors of *walk-in coolers* and *walk-in freezers* shall be provided with insulation having a thermal resistance of not less than R-32.

Exception: Insulation is not required for glazed portions of doors or at structural members associated with the walls, ceiling or door frame.

- The floor of *walk-in freezers* shall be provided with insulation having a thermal resistance of not less than R-28.
- Transparent reach-in doors for and windows in opaque walk-in freezer doors shall be provided with triple-pane glass having the interstitial spaces filled with inert gas or provided with heat-reflective treated glass.
- Transparent reach-in doors for and windows in opaque walk-in cooler doors shall be double-pane heat-reflective treated glass having the interstitial space gas filled.
- Evaporator fan motors that are less than 1 hp (0.746 kW) and less than 460 volts shall be electronically commutated motors or 3-phase motors.
- Condenser fan motors that are less than 1 hp (0.746 kW) in capacity shall be of the electronically commutated or permanent split capacitortype or shall be 3-phase motors.

Exception: Fan motors in *walk-in coolers* and *walk-in freezers* combined in a single enclosure greater than 3,000 square feet (279 m²) in floor area are exempt.

9. Antisweat heaters that are not provided with antisweat heater controls shall have a total door rail, glass and frame heater power draw not greater than 7.1 W/ft² (76 W/m²) of door opening for *walk-in freezers*, and not greater than 3.0 W/ft² (32 W/m²) of door opening for *walk-in coolers*.

- 10. Antisweat heater controls shall be capable of reducing the energy use of the antisweat heater as a function of the relative humidity in the air outside the door or to the condensation on the inner glass pane.
- 11. Light sources shall have an efficacy of not less than 40 lumens per Watt, including any ballast losses, or shall be provided with a device that automatically turns off the lights within 15 minutes of when the walk-in cooler or walk-in freezer was last occupied.

C403.2.17 **Refrigerated display cases.** Site-assembled or site-constructed refrigerated display cases shall comply with the following:

- 1. Lighting and glass doors in refrigerated display cases shall be controlled by one of the following:
 - 1.1. Time switch controls to turn off lights during nonbusiness hours. Timed overrides for display cases shall turn the lights on for up to 1 hour and shall automatically time out to turn the lights off.
 - 1.2. Motion sensor controls on each display case section that reduce lighting power by at least 50 percent within 3 minutes after the area within the sensor range is vacated.
- Low-temperature display cases shall incorporate temperature-based defrost termination control with a time-limit default. The defrost cycle shall terminate first on an upper temperature limit breach and second upon a time limit breach.
- Antisweat heater controls shall reduce the energy use of the antisweat heater as a function of the relative humidity in the air outside the door or to the condensation on the inner glass pane.

C403.3 Economizers (Prescriptive). Each cooling system \geq 54,000 Btu/h that has a fan shall include either an air or water economizer complying with Sections C403.3.1 through C403.3.4

Exceptions: Economizers are not required for the systems listed below.

- 1. In cooling systems for buildings located in *Climate* Zones 1A and 1B.
- - 2.1.1.1. Have direct expansion cooling coils.
 - 2.2.1.2. The total chilled water system capacity less the capacity of fan units with air economizers is

less than the minimum specified in Table C403.3(1).

The total supply capacity of all fan-cooling units, excluding heat pumps, <u>hot</u> provided withwithout economizers shall not exceed 20 percent of the total supply capacity of all fancooling units in the building or 300,000 Btu/h (88 kW), whichever is greater.

- 3.2. Where more than 25 percent of the air designed to be supplied by the system is to spaces that are designed to be humidified above 35°F (1.7°C) dewpoint temperature to satisfy process needs.
- 4.3. Systems that serve *residential* spaces where the sys- tem capacity is less than five times the requirement listed in Table C403.3(1).
- 54. Systems expected to operate less than 20 hours per week.
- .5. Where the use of *outdoor air* for cooling will affect supermarket open refrigerated casework systems.

Where the cooling *efficiency* meets or exceeds the *efficiency* requirements in Table C403.3(2).

Chilled-water cooling systems that are passive (without a fan) or use induction where the total chilled water system capacity less the capacity of fan units with air economizers is less than the minimum specified in Table C403.3(1).

9.7. Systems that include a heat recovery system in accordance with Section C403.4.7.

TABLE C403.3(2) EQUIPMENT_EFFICIENCY_PERFORMANCE EXCEPTION FOR ECONOMIZERS

CLIMATE ZONES	COOLING EQUIPMENT PERFORMANCE- IMPROVEMENT (EER OR IPLV)
2B -	10% efficiency improvement
3B	15% efficiency improvement
4 B -	20% efficiency improvement

C403.3.1 Integrated economizer control. Economizer systems shall be integrated with the mechanical cooling system and be capable of providing partial cooling even where additional mechanical cooling is required to provide the remainder of the cooling load. Controls shall not be capable of creating a false load in the mechanical cooling systems by limiting or disabling the economizer or any other means, such as hot gas bypass, except at the lowest stage of mechanical cooling.

Comment [NAV13]: Stakeholders (FYI): This is to address a known VT-specific problem where it is cost-prohibitive for buildings with many water source heat pump systems (totaling over 300KBtu/h) to meet the economizer requirement even though they may be a more efficient choice.

Comment [NAV14]: Stakeholder input needed: This was deleted for 2011 VT CBES. Consider striking again or keeping

Comment [NAV15]: Stakeholder input needed: 2011 CBES had 2 Exceptions (below). Need to consider inclusion in updated CBES?

1-Direct expansion systems that include controls that reduce the quantity of outdoor air required to prevent coil frosting at the lowest step of compressor unloading, provided this lowest step is no greater than 25% of the total system capacity. 2-Individual direct expansion units that have a rated cooling capacity less than 54,000 Btu/h and use non-integrated economizer controls that preclude simultaneous operation of the economizer and mechanical cooling.

TABLE C403.3(1)
MINIMUM CHILLED-WATER SYSTEM COOLING CAPACITY FOR DETERMINING ECONOMIZER COOLING REQUIREMENTS
CLIMATE ZONES TOTAL CHILLED-WATER SYSTEM CAPACITY LESS CAPACITY OF COOLING UNITS WITH AIR ECONOMIZERS

	CLIWATE ZONES	IATE ZONES			
	(COOLING)	Local Water-cooled Chilled-water Systems	Air-cooled Chilled-water Systems or District Chilled-Water Systems		
l	la	No economizer requirement	No economizer requirement		
l	1b, 2a, 2b	960,000 Btu/h	1,250,000 Btu/h		
	3a, 3b, 3c, 4a, 4b, 4c	720,000 Btu/h	940,000 Btu/h		
l	5a, 5b, 5c, 6 a , 6b, 7, 8	1,320,000 Btu/h	1,720,000 Btu/h		

For SI:1 British thermal unit per hour = 0.2931 W.

2015 INTERNATIONAL ENERGY CONSERVATION CODE®

C-61

Units that include an air economizer shall comply with the following:

- Unit controls shall have the mechanical cooling capacity control interlocked with the air economizer controls, such that.
 - _-the outdoor air damper is at the 100-percent open position when mechanical cooling is on and
 - i. the outdoor air damper does not begin to close until the leaving air temperature is less than 45°F (7°C) (to prevent coil freezing due to minimum com—pressor run time) until the leaving air temperature is less than 45°F (7°C).
- Direct expansion (DX) units that control 75,000 Btu/h (22 kW) or greater of rated capacity of the capacity of the mechanical cooling directly based on occupied space temperature shall have not fewer than two stages of mechanical cooling capacity
- 3. Other DX units, including those that control space temperature by modulating the airflow to the space, shall be in accordance with Table C403.3.1.

C403.3.2 Economizer heating system impact. HVAC system design and economizer controls shall be such that economizer operation does not increase building heating energy use during normal operation.

Exception: Economizers on variable air volume (VAV) systems that cause *zone* level heating to increase due to a reduction in supply air temperature.

C403.3.3 Air economizers. Air economizers shall comply with Sections C403.3.3.1 through C403.3.3.5.

C403.3.3.1 Design capacity. Air economizer systems shall be capable of modulating *outdoor air* and return air dampers to provide up to 100 percent of the design supply air quantity as *outdoor air* for cooling.

C403.3.3.2 Control signal. Economizer dampers shall be capable of being sequenced with the mechanical cooling equipment and shall not be controlled by only mixed-air temperature.

Exception: The use of mixed-air temperature limit control shall be permitted for systems controlled from space temperature (such as single-*zone* systems).

C403.3.3.3 High-limit shutoff. Air economizers shall be capable of automatically reducing *outdoor air* intake to the design minimum *outdoor air* quantity when *outdoor air* intake will no longer reduce cooling energy usage. High-limit shutoff control types for specific climates shall be chosen from Table C403.3.3.3. High-limit shutoff control settings for these control types shall be those specified in Table C403.3.3.3.

C403.3.3.4 Relief of excess outdoor air. Systems shall be capable of relieving excess *outdoor air* during air economizer operation to prevent overpressurizing the building. The relief air outlet shall be located to avoid recirculation into the building.

TABLE C403.3.1 DX COOLING STATESTAGE REQUIREMENTS FOR MODULATING AIRFLOW UNITS			
RATING CAPACITY	MINIMUM NUMBER OF MECHANICAL COOLING STAGES	MINIMUM COMPRESSOR DISPLACEMENT [®]	
≥ 65,000 Btu/h and < 240,000 Btu/h	3 stages	\leq 35% of full load	
≥ 240,000 Btu/h	4 stages	$\leq 25\%$ full load	

For SI: 1 British thermal unit per hour = 0.2931 W.

a. For *mechanical cooling* stage control that does not use variable compressor displacement, the percent displacement shall be equivalent to the mechanical cooling capacity reduction evaluated at the full load rating conditions for the compressor.

I	HIGH-LIMIT SHUTOFF CONTROL SETTING FOR AIR ECONOMIZERS [®] ECONOMIZERS [®]				
	DEVICE TYPE	CLIMATE ZONE	REQUIRED HIGH LIMIT (ECONOMIZER OFF WHEN):		
		•	Equation	Description	
		1B, 2B, 3B, 3C, 4B, 4C, 5B, 5C, 6B, 7, 8	T _{oA} > 75°F	Outdoor air temperature exceeds 75°F	
	Fixed dry bulb	5A, 6A	$T_{OA} > 70^{\circ}\mathrm{F}$	Outdoor air temperature exceeds 70°F	
		1A, 2A, 3A, 4A	$T_{oa} > 65^{\circ}F$	Outdoor air temperature exceeds 65°F	
	Differential dry bulb	1B, 2B, 3B, 3C, 4B, 4C, 5A, 5B, 5C, 6A, 6B, 7, 8	$T_{OA} > T_{RA}$	Outdoor air temperature exceeds return air temperature	
	Fixed enthalpy with fixed dry-bulb temperatures	All	$h_{OA} > 28 \text{ Btu/lb}^{4} \text{ or}$ $T_{OR} > \frac{7570}{75} \text{ F}$	Outdoor air enthalpy exceeds 28 Btu/lb of dry air [#] or Outdoor air temperature exceeds 75°F	
	Differential enthalpy with fixed dry-bulb temperature	All	$h_{OA} > h_{RA}$ or $T \xrightarrow{OR} 75\underline{70}^{\circ}\mathrm{F}$	Outdoor air enthalpy exceeds return air enthalpy or Outdoor air temperature exceeds 75°F	

For SI: 1 foot = 305 mm, °C = (°F - 32)/1.8, 1 Btu/lb = 2.33 kJ/kg.

Comment [NAV16]: "Climate Zone" column will be deleted

Comment [NAV17]: ICC: Delete superscript (a)

At altitudes substantially different than sea level, the fixed enthalpy limit shall be set to the enthalpy value at 75°F and 50-percent relative humidity. As an example, at approximately 6,000 feet elevation, the fixed enthalpy limit is approximately 30.7 Btu/lb.
a. Devices with selectable setpoints shall be capable of being set to within 2°F and 2 Btu/lb of the setpoint listed.

2015 INTERNATIONAL ENERGY CONSERVATION CODE®

C-62

C403.3.3.5 Economizer dampers. Return, exhaust/ relief and outdoor air dampers used in economizers shall comply with Section C403.2.4.3.

C403.3.4 Water-side economizers. Water-side economizers shall comply with Sections C403.3.4.1 and C403.3.4.2.

C403.3.4.1 Design capacity. Water economizer systems shall be capable of cooling supply air by indirect evaporation and providing up to 100 percent of the expected system cooling load at *outdoor air* temperatures of not greater than 50° F (10° C) dry bulb/45°F (7° C) wet bulb.

Exceptions:

1

- Systems primarily serving computer rooms in which 100 percent of the expected system cooling load at 40°F (4°C) dry bulb/35°F (1.7°C) wet bulb is met with evaporative water economizers.
- Systems primarily serving computer rooms with dry cooler water economizers which satisfy 100 percent of the expected system cooling load at 35°F (1.7°C) dry bulb.
- 3. Systems where dehumidification requirements cannot be met using outdoor air temperatures of 50°F (10°C) dry bulb/45°F (7°C) wet bulb and where 100 percent of the expected system cooling load at 45°F (7°C) dry bulb/40°F (4°C) wet bulb is met with evaporative water economizers.

C403.3.4.2 Maximum pressure drop. Precooling coils and water-to-water heat exchangers used as part of a water economizer system shall either have a waterside pressure drop of less than 15 feet (45 kPa) of water or a secondary loop shall be created so that the coil or heat exchanger pressure drop is not seen by the circulating pumps when the system is in the normal cooling (noneconomizer) mode.

C403.4 Hydronic and multiple-zone HVAC systems controls and equipment. (Prescriptive). Hydronic and multiplezone HVAC system controls and equipment shall comply with this section.

C403.4.1 Fan control. Controls shall be provided for fans in accordance with Sections C403.4.1.1 through C403.4.1.3.

C403.4.1.1 Fan airflow control. Each cooling system listed in Table C403.4.1.1 shall be designed to vary the indoor fan airflow as a function of load and shall comply with the following requirements:

 Direct expansion (DX) and chilled water cooling units that control the capacity of the mechanical cooling directly based on space temperature shall have not fewer than two stages of fan control. Low or minimum speed shall not be greater than 66 percent of full speed. At low or minimum speed, the fan system shall draw not more than 40 percent of the fan power at full fan speed. Low or minimum speed shall be used during periods of low cooling load and ventilation-only operation.

2. Other units including DX cooling units and chilled water units that control the space temperature by modulating the airflow to the space shall have modulating fan control. Minimum speed shall be not greater than 50 percent of full speed. At minimum speed the fan system shall draw not more than 30 percent of the power at full fan speed. Low or minimum speed shall be used during periods of low cooling load and ventilationonly operation.

 Units that include an airside economizer in accordance with Section C403.3 shall have not fewer than two speeds of fan control during economizer operation.

Exceptions:

air.

Modulating fan control is not required for chilled water and evaporative cooling units with fan motors of less than 1 hp (0.746 kW) where the units are not used to provide *ventilation* air and the indoor fan cycles with the load.

Where the volume of outdoor air required to comply with the ventilation requirements of the International Mechanical CodeASHRAE Standard 62.1-2013 at low speed exceeds the air that would be delivered at the speed defined in Section C403.4.1, the minimum speed shall be selected to provide the required ventilation

TABLE C403.4.1.1

COOLING SYSTEM TYPE	FAN MOTOR SIZE	MECHANICAL COOLING CAPACITY	
DX cooling	Any	≥ 75,000 Btu/h (before 1/1/2016)	
DA cooling	Any	≥ 65,000 Btu/h (after 1/1/2016	
Chilled water and	$\geq 5 \text{ hp}$	Any	
evaporative cooling	$\geq \frac{1}{4}$ hp	Any	

For SI: 1 British thermal unit per hour = 0.2931 W; 1 hp = 0.746 kW.

C403.4.1.2 Static pressure sensor location. Static pressure sensors used to control VAV fans shall be located such that the controller set point is not greater than **1.2** inches w.c. (299 Pa). Where this results in one or more sensors being located downstream of major duct splits, not less than one sensor shall be located on each major branch to ensure that static pressure can be maintained in each branch.

C403.4.1.3 Set points for direct digital control. For systems with direct digital control of individual reporting to the central control panel, the static pressure set point shall be reset based on the *zone* requiring the most pressure. In such case, the set point is reset lower until one *zone* damper is nearly wide open. The direct digital controls shall be capable of monitoring *zone* damper positions or shall have an alternative method of indicating the need for static pressure that is capable of all of the following:

- 1. Automatically detecting any *zone* that excessively drives the reset logic.
- 2. Generating an alarm to the system operational location.
- 3. Allowing an operator to readily remove one or more *zones* from the reset algorithm.

C403.4.2 Hydronic systems controls. The heating of fluids that have been previously mechanically cooled and the cooling of fluids that have been previously mechanically heated shall be limited in accordance with Sections C403.4.2.1 through C403.4.2.3. Hydronic heating systems comprised of multiple-packaged boilers and designed to deliver conditioned water or steam into a common distribution system shall include automatic controls capable of sequencing operation of the boilers. Hydronic heating systems comprised of a single boiler and greater than 500,000 Btu/h (146.5 kW) input design capacity shall include either a multistaged or modulating burner.

C403.4.2.1 Three-pipe system. Hydronic systems that use a common return system for both hot water and chilled water are prohibited.

C403.4.2.2 Two-pipe changeover system. Systems that use a common distribution system to supply both heated and chilled water shall be designed to allow a dead band between changeover from one mode to the other of not less than $15^{\circ}F(8.3^{\circ}C)$ outside air temperatures; be designed to and provided with controls that will allow operation in one mode for not less than 4 hours before changing over to the other mode; and be provided with controls that allow heating and cooling supply temperatures at the changeover point to be not more than $30^{\circ}F(16.7^{\circ}C)$ apart.

C403.4.2.3 Hydronic (water loop) heat pump systems. Hydronic heat pump systems shall comply with Sections C403.4.2.3.1 through C403.4.2.3.2.

C403.4.2.3.1 Temperature dead band. Hydronic heat pumps connected to a common heat pump water loop with central devices for heat rejection and heat addition shall have controls that are capable of providing a heat pump water supply temperature dead band of not less than 20°F (11°C) between initiation of heat rejection and heat addition by the central devices.

Exception: Where a system loop temperature optimization controller is installed and can determine the most efficient operating temperature based on realtime conditions of demand and

capacity, dead bands of less than 20°F (11°C) shall be permitted.

C403.4.2.3.2 Heat rejection. Heat rejection<u>If an</u> open- or closed- circuit cooling tower is used, a separate heat exchanger shall be provided to isolate the cooling tower from the heat pump loop, and heat loss shall be controlled by shutting down the circulation pump on the cooling tower loop and providing an automatic valve to stop the flow of fluid. equip ment_shall comply with Sections C403.4.2.3.2.1 and C403.4.2.3.2.2.

Exception: Where it can be demonstrated that a heat pump system will be required to reject heat throughout the year.

C403.4.2.3.2.1 Climate zones 3 and 4. For Climate Zones 3 and 4:

- 1. Where a closed eircuit cooling tower is used directly in the heat pump loop, either an automatic valve shall be installed to bypass all but a minimal flow of water around the tower, or lower leakage positive closure dampers shall be provided.
 - Where an open circuit tower is used directly in the heat pump loop, an automatic valve shall be installed to bypass all heat pump water flow around the tower.
- Where an open or closed circuit cooling tower is used in conjunction with a separate heat exchanger to isolate the cooling tower from the heat pump loop, then heat loss shall be controlled by shutting down the circulation pump on the cooling tower loop.

C403.4.2.3.2.2 Climate zones 5 through 8. For Climate Zones 5 through 8, where an open-or closedcircuit cooling tower is used, a separate heat exchanger shall be provided to isolate the cooling tower from the heat pump loop, and heat loss shall be controlled by shutting down the circulation pump on the cooling tower loop and providing an automatic valve to stop the flow of fluid.

C403.4.2.3.3 Two-position valve. Each hydronic heat pump on the hydronic system having a total pump system power exceeding 10 hp (7.5 kW) shall have a two-position valve.

C403.4.2.4 Part-load controls. Hydronic systems greater than or equal to 500,000 Btu/h (146.5 kW) in design output capacity supplying heated or chilled water to comfort conditioning systems shall include controls that have the capability to do all of the following:

- Automatically reset the supply-water temperatures in response to varying building heating and cooling demand using coil valve position, zonereturn water temperature, building-return water temperature or outside air temperature. The temperature shall be capable of being reset by not less than 25 percent of the design supply-toreturn water temperature difference.
- 2. Automatically vary fluid flow for hydronic systems with a combined motor capacity of 10 hp

 $(7.5\ kW)$ or larger with three or more control valves or other devices by reducing the system

C-64

design flow rate by not less than 50 percent by

designed valves that modulate or step open and close, or pumps that modulate or turn on and off as a function of load.

3. Automatically vary pump flow on chilled-water systems and heat rejection loops serving water-cooled unitary air conditioners with a combined motor capacity of 10 hp (7.5 kW) or larger by reducing pump design flow by not less than 50 percent, utilizing adjustable speed drives on pumps, or multiple-staged pumps where not less than one-half of the total pump horsepower is capable of being automatically turned off. Pump flow shall be controlled to maintain one control valve nearly wide open or to satisfy the minimum differential pressure.

Exceptions:

- Supply-water temperature reset for chilled-water systems supplied by off-site district chilled water or chilled water from ice storage systems.
- Minimum flow rates other than 50 percent as required by the equipment manufacturer for proper operation of equipment where using flow bypass or end-of-line 3-way valves.
- Variable pump flow on dedicated equipment circulation pumps where configured in primary/secondary design to provide the minimum flow requirements of the equipment manufacturer for proper operation of equipment.

C403.4.2.5 Boiler turndown. Boiler systems with design input of greater than 1,000,000 Btu/h (293 kW) shall comply with the turndown ratio specified in Table C403.4.2.5.

The system turndown requirement shall be met through the use of multiple single input boilers, one or more *modulating boilers* or a combination of single input and *modulating boilers*.

C403.4.2.6 Pump isolation. Chilled water plants including more than one chiller shall have the capability to reduce flow automatically through the chiller plant when a chiller is shut down. Chillers piped in series for the purpose of increased temperature differential shall be considered as one chiller.

Boiler plants including more than one boiler shall have the capability to reduce flow automatically through the boiler plant when a boiler is shut down.

TABLE C403.4.2.5 BOILER TURNDOWN

BOILER SYSTEM DESIGN INPUT (Btu/h)	MINIMUM TURNDOWN RATIO
\geq 1,000,000 and less than or equal to 5,000,000	3 to 1
> 5,000,000 and less than or equal to 10,000,000	4 to 1
> 10,000,000	5 to 1

For SI: 1 British thermal unit per hour = 0.2931 W.

2015 INTERNATIONAL ENERGY CONSERVATION CODE®

C403.4.3 Heat rejection equipment. Each fan powered by a motor of 7.5 hp (5.6 kW) or larger shall have the capability to operate that fan at two-thirds of full speed or less, and shall have controls that automatically change the fan speed to control the leaving fluid temperature or condensing temperature/pressure of the heat rejection device.

Exception: Factory-installed heat rejection devices within HVAC equipment tested and rated in accordance with Tables C403.2.3(6) and C403.2.3(7).

C403.4.3.1 General. Heat rejection equipment such as air-cooled condensers, dry coolers, open-circuit cooling towers, closed-circuit cooling towers and evaporative condensers used for comfort cooling applications shall comply with this section.

Exception: Heat rejection devices where energy usage is included in the equipment efficiency ratings listed in Tables C403.2.3(6) and C403.2.3(7).

C403.4.3.2 Fan speed control. The fan speed shall be controlled as provided in Sections C403.4.3.2.1 and C403.4.3.2.2.

C403.4.3.2.1 Fan motors not less than 7.5 hp. Each fan powered by a motor of 7.5 hp (5.6 kW) or larger shall have the capability to operate that fan at two-thirds of full speed or less, and shall have controls that automatically change the fan speed to control the leaving fluid temperature or condensing temperature/pressure of the heat rejection device.

Exception: The following fan motors over 7.5 hp (5.6 kW) are exempt:

- 1. Condenser fans serving multiple refrigerant circuits.
- 2. Condenser fans serving flooded condensers.
- 3. Installations located in *Climate Zones* 1 and 2.

C403.4.3.2.2 Multiple-cell heat rejection equipment. Multiple-cell heat rejection equipment with variable speed fan drives shall be controlled in both of the following manners:

- To operate the maximum number of fans allowed that comply with the manufacturer's requirements for all system components.
- So all fans can operate at the same fan speed required for the instantaneous cooling duty, as opposed to staged (on/off) operation.

Minimum fan speed shall be the minimum allowable speed of the fan drive system in accordance with the manufacturer's recommendations.

C403.4.3.3 Limitation on centrifugal fan open-circuit cooling towers. Centrifugal fan open-circuit cooling towers with a combined rated capacity of 1,100 gpm (4164 L/m) or greater at 95°F (35°C) condenser water return, 85°F (29°C) condenser water supply, and 75°F (24°C) outdoor air wet-bulb temperature shall

meet the energy efficiency requirement for axial fan open-circuit cooling towers listed in Table C403.2.3(8).

Exception: Centrifugal open-circuit cooling towers that are designed with inlet or discharge ducts or require external sound attenuation.

C403.4.3.4 Tower flow turndown. Open-circuit cooling towers used on water-cooled chiller systems that are configured with multiple- or variable-speed condenser water pumps shall be designed so that all opencircuit cooling tower cells can be run in parallel with the larger of the flow that is produced by the smallest pump at its minimum expected flow rate or at 50 percent of the design flow for the cell.

C403.4.4 Requirements for complex mechanical systems serving multiple zones. Sections C403.4.4.1 through C403.4.6.4 shall apply to complex mechanical systems serving multiple zones. Supply air systems serving multiple zones shall be variable air volume (VAV) systems that, during periods of occupancy, are designed and capable of being controlled to reduce primary air supply to each *zone* to one of the following before reheating, recooling or mixing takes place:

- 1. Thirty percent of the maximum supply air to each *zone*.
- 2. Three hundred cfm (142 L/s) or less where the maximum flow rate is less than 10 percent of the total fan system supply airflow rate.
- The minimum ventilation requirements of Chapter 4 of the International Mechanical Code. ASHRAE Standard 62.1-2013.
- 4. Any higher rate that can be demonstrated to reduce overall system annual energy use by offsetting reheat/recool energy losses through a reduction in outdoor air intake for the system, as approved by the eode afficial code official or authority having jurisdiction.
- The airflow rate required to comply with applicable codes or accreditation standards, such as pressure relationships or minimum air change rates.

Exception: The following individual *zones* or entire air distribution systems are exempted from the requirement

- for VAV control:
 - 1. *Zones* or supply air systems where not less than 75 percent of the energy for reheating or for providing warm air in mixing systems is provided from a site-recovered or site-solar energy source.
 - 2. *Zones* where special humidity levels are required to satisfy process needs.
 - Zones with a peak supply air quantity of 300 cfm (142 L/s) or less and where the flow rate is less than 10 percent of the total fan system supply airflow rate.
 - Zones where the volume of air to be reheated, recooled or mixed is not greater than the volume of outside air required to provide the minimum ventilation requirements of Chapter 4 of <u>ASHRAE</u> <u>Standard 62.1-2013</u>the International Mechanical Code.

5. Zones or supply air systems with thermostatic and humidistatic controls capable of operating in sequence the supply of heating and cooling energy to the zones and which are capable of preventing reheating, recooling, mixing or simultaneous supply of air that has been previously cooled, either mechanically or through the use of economizer systems, and air that has been previously mechanically heated.

C403.4.4.1 Single-duct VAV systems, terminal devices. Single-duct VAV systems shall use terminal devices capable of reducing the supply of primary supply air before reheating or recooling takes place.

C403.4.4.2 Dual-duct and mixing VAV systems, terminal devices. Systems that have one warm air duct and one cool air duct shall use terminal devices that are capable of reducing the flow from one duct to a minimum before mixing of air from the other duct takes place.

C403.4.4.3 Single-fan dual-duct and mixing VAV systems, economizers. Individual dual-duct or mixing heating and cooling systems with a single fan and with total capacities greater than 90,000 Btu/h [(26.4 kW) 7.5 tons] shall not be equipped with air economizers.

C403.4.4.4 Fractional hp fan motors. Motors for fans that are not less than $1/_{12}$ hp (0.082 kW) and less than 1 hp (0.746 kW) shall be electronically commutated motors or shall have a minimum motor efficiency of 70 percent, rated in accordance with DOE 10 CFR 431. These motors shall also have the means to adjust motor speed for either balancing or remote control. The use of belt-driven fans to sheave adjustments for airflow balancing instead of a varying motor speed shall be permitted.

- **Exceptions:** The following motors are not required to comply with this section:
 - Motors in the airstream within fan coils and terminal units that only provide heating to the space served.
 - 2. Motors in space-conditioning equipment that comply with Section 403.2.3 or C403.2.12.
 - 3. Motors that comply with Section C405.8.

C403.4.4.5 Supply-air temperature reset controls. Multiple-*zone* HVAC systems shall include controls that automatically reset the supply-air temperature in response to representative building loads, or to outdoor air temperature. The controls shall be capable of resetting the supply air temperature not less than 25 percent of the difference between the design supply-air temperature autore and the design room air temperature.

Exceptions:

- 1. Systems that prevent reheating, recooling or mixing of heated and cooled supply air.
- Seventy-five percent of the energy for reheating is from site-recovered or site-solar energy sources.
- 3. *Zones* with peak supply air quantities of 300 cfm (142 L/s) or less.

2015 INTERNATIONAL ENERGY CONSERVATION CODE $^{\circ}$

C403.4.4.6 Multiple-zone VAV system ventilation optimization control. Multiple-zone VAV systems with direct digital control of individual zone boxes reporting to a central control panel shall have automatic controls configured to reduce outdoor air intake flow below design rates in response to changes in system ventilation efficiency (E_v) as defined by the International Mechanical Code ASHRAE Standard 62.1-2013.

Exceptions:

- VAV systems with zonal transfer fans that recirculate air from other zones without directly mixing it with outdoor air, dual-duct dual-fan VAV systems, and VAV systems with fan-powered terminal units.
- Systems having exhaust air energy recovery complying with Section C403.2.7.
- Systems where total design exhaust airflow is more than 70 percent of total design outdoor air intake flow requirements.

C403.4.5 Heat recovery for service water heating. Condenser heat recovery shall be installed for heating or reheating of service hot water provided that the facility operates 24 hours a day, the total installed heat capacity of water-cooled systems exceeds 6,000,000 Btu/hr (1 758 kW) of heat rejection, and the design service water heating load exceeds 1,000,000 Btu/h (293 kW).

The required heat recovery system shall have the capacity to provide the smaller of the following:

- 1. Sixty percent of the peak heat rejection load at design conditions.
- 2. The preheating required to raise the peak service hot water draw to 85°F (29°C).

Exceptions:

- 1. Facilities that employ condenser heat recovery for space heating or reheat purposes with a heat recovery design exceeding 30 percent of the peak water-cooled condenser load at design conditions.
- Facilities that provide 60 percent of their service water heating from site solar or site recovered energy or from other sources.
- 3. If compliance with C403.4.5 will be detrimental to chiller operating efficiency due to conflicts with optimized chiller head pressure control.

C403.4.6 Hot gas bypass limitation. Cooling systems shall not use hot gas bypass or other evaporator pressure control systems unless the system is designed with multiple steps of unloading or continuous capacity modulation. The capacity of the hot gas bypass shall be limited as indicated in Table C403.4.6, as limited by Section C403.3.1.

TABLE C403.4.6

MAXIMUM HOT GAS BYPASS CAPACITY		
RATED CAPACITY	MAXIMUM HOT GAS BYPASS CAPACITY (% of total capacity)	
\leq 240,000 Btu/h	50 <u>%</u>	
> 240,000 Btu/h	25 <u>%</u>	

For SI: 1 British thermal unit per hour = 0.2931 W.

C403.5 Refrigeration systems. Refrigerated display cases, *walk-in coolers* or *walk-in freezers* that are served by remote compressors and remote condensers not located in a *condensing unit*, shall comply with Sections C403.5.1 and C403.5.2.

Exception: Systems where the working fluid in the refrigeration cycle goes through both subcritical and supercritical states (transcritical) or that use ammonia refrigerant are exempt.

C403.5.1 Condensers serving refrigeration systems. Fan-powered condensers shall comply with the following:

- The design saturated condensing temperatures for air-cooled condensers shall not exceed the design dry-bulb temperature plus 10°F (5.6°C) for low-temperature refrigeration systems, and the design drybulb temperature plus 15°F (8°C) for medium temperature refrigeration systems where the saturated condensing temperature for blend refrigerants shall be determined using the average of liquid and vapor temperatures as converted from the condenser drain pressure.
- Condenser fan motors that are less than 1 hp (0.75 kW) shall use electronically commutated motors, permanent split-capacitor-type motors or 3-phase motors.
- 3. Condenser fans for air-cooled condensers, evaporatively cooled condensers, air- or water-cooled fluid coolers or cooling towers shall reduce fan motor demand to not more than 30 percent of design wattage at 50 percent of design air volume, and incorporate one of the following continuous variable speed fan control approaches:
 - 3.1. Refrigeration system condenser control for air-cooled condensers shall use variable setpoint control logic to reset the condensing temperature setpoint in response to ambient dry-bulb temperature.
 - 3.2. Refrigeration system condenser control for evaporatively cooled condensers shall use variable setpoint control logic to reset the condensing temperature setpoint in response to ambient wet-bulb temperature.

4. Multiple fan condensers shall be controlled in unison.

 The minimum condensing temperature setpoint shall be not greater than 70°F (21°C).

2015 INTERNATIONAL ENERGY CONSERVATION CODE®

C-67

C403.5.2 Compressor systems. Refrigeration compressor systems shall comply with the following:

 Compressors and multiple-compressor system suction groups shall include control systems that use floating suction pressure control logic to reset the target suction pressure temperature based on the temperature requirements of the attached refrigeration display cases or walk-ins.

Exception: Controls are not required for the following:

- 1. Single-compressor systems that do not have variable capacity capability.
- Suction groups that have a design saturated suction temperature of 30°F (-1.1°C) or higher, suction groups that comprise the high stage of a two-stage or cascade system, or suction groups that primarily serve chillers for secondary cooling fluids.
- 2. Liquid subcooling shall be provided for all low-temperature compressor systems with a design cooling capacity equal to or greater than 100,000 Btu/hr (29.3 kW) with a design-saturated suction temperature of -10°F (-23°C) or lower. The sub-cooled liquid temperature shall be controlled at a maximum temperature setpoint of 50°F (10°C) at the exit of the subcooler using either compressor economizer (interstage) ports or a separate compressor suction group operating at a saturated suction temperature of 18°F (-7.8°C) or higher.
 - 2.1. Insulation for liquid lines with a fluid operating temperature less than 60°F (15.6°C) shall comply with Table C403.2.10.
- Compressors that incorporate internal or external crankcase heaters shall provide a means to cycle the heaters off during compressor operation.

SECTION C404 SERVICE WATER HEATING (MANDATORY)

C404.1 General. This section covers the minimum efficiency of, and controls for, service water-heating equipment and insulation of service hot water piping.

C404.1.1 Electrical water heating limitation. Individual electric service water heating units shall be limited to a maximum of 5 kW total power input.

Exception: Instantaneous electric water heaters used to serve emergency showers and emergency eye wash stations.

C404.2 Service water-heating equipment performance efficiency. Water-heating equipment and hot water storage tanks shall meet the requirements of Table C404.2. The efficiency shall be verified through data furnished by the manufacturer of the equipment or through certification under an *approved* certification program. Water-heating equipment also intended to be used to provide space heating shall meet the applicable provisions of Table C404.2.

C404.2.1 High input-rated service water-heating systems. Gas-fired water-heating equipment installed in new buildings shall be in compliance with this section. Where a singular piece of water-heating equipment serves the entire building and the input rating of the equipment is 1,000,000 Btu/h (293 kW) or greater, such equipment shall have a thermal efficiency, E_n of not less than 90 percent. Where multiple pieces of water-heating equipment

serve the building and the combined input rating of the water-heating equipment is 1,000,000 Btu/h (293 kW) or greater, the combined input-capacity-weightedaverage thermal efficiency, E_{r} , shall be not less than 90 percent.

Exceptions:

- Where 25 percent of the annual service water- heating requirement is provided by site-solar or site-recovered energy, the minimum thermal effi- ciency requirements of this section shall not apply.
- The input rating of water heaters installed in indi- vidual dwelling units shall not be required to be included in the total input rating of *service water- heating* equipment for a building.
- The input rating of water heaters with an input rating of not greater than 100,000 Btu/h (29.3 kW) shall not be required to be included in the total input rating of *service water-heating* equip- ment for a building.

C404.3 Heat traps. Water-heating equipment not supplied with integral heat traps and serving noncirculating systems shall be provided with heat traps on the supply and discharge piping associated with the equipment.

C404.4 Insulation of piping. Piping from a water heater to the termination of the heated water fixture supply pipe shall be insulated in accordance with Table C403.2.10. On both the inlet and outlet piping of a storage water heater

C-68

or heated water storage tank, the piping to a heat trap or the first 8 feet (2438 mm) of piping, whichever is less, shall be insulated. Piping that is heat traced shall be insulated in accordance with Table C403.2.10 or the heat trace manufacturer's instructions. Tubu- lar pipe insulation shall be installed in accordance with the insulation manufacturer's instructions. Pipe insulation shall be continuous except where the piping passes through a framing member. The minimum insulation thickness requirements of this section shall not supersede any greater insulation thickness requirements necessary for the protection of piping from freezing temperatures or the protection of personnel against external surface temperatures on the insulation.

- Exception: Tubular pipe insulation shall not be required on the following:
 - The tubing from the connection at the termination of the fixture supply piping to a plumbing fixture or plumbing appliance.
 - Valves, pumps, strainers and threaded unions in piping that is 1 inch (25 mm) or less in nominal diameter.
 - Piping from user-controlled shower and bath mixing valves to the water outlets.
 - Cold-water piping of a demand recirculation water system.
 - 5. Tubing from a hot drinking-water heating unit to the water outlet.
 - 6. Piping at locations where a vertical support of the piping is installed.
 - 7. Piping surrounded by building insulation with a thermal resistance (*R*-value) of not less than R-3.

	SIZE CATEGORY	SUBCATEGORY OR	PERFORMANCE	TEST
EQUIPMENT TYPE	(input)	RATING CONDITION	REQUIRED ^{a, b}	PROCEDURE
	$\leq \frac{12-5}{5}kW^4$	Resistance	0.97 - 0.00 132V, EF	DOE 10 CFR Part 430
Water heaters, electric	<u>>12 k₩</u>	Resistance	$\frac{(0.3+27/V_m)}{M}$	ANSI Z21.10.3
	≤ 24 amps and ≤ 250 volts	Heat pump	0.93 - 0.00 132 <i>V</i> , EF	DOE 10 CFR Part 430
	≤ 75,000 Btu/h	≥ 20 gal	0.67 - 0.0019V, EF	DOE 10 CFR Part 430
Storage water heaters, gas	> 75,000 Btu/h and ≤ 155,000 Btu/h	< 4,000 Btu/h/gal	$80\% E_t$ (Q/800 + 110 \sqrt{V})SL, Btu/h	ANSI Z21.10.3
c .	> 155,000 Btu/h	<4,000 Btu/h/gal	$80\% E_t$ (Q/800 + 110 $\sqrt{\nabla}$)SL, Btu/h	ANSI 221.10.5
	> 50,000 Btu/h and < 200,000 Btu/h ^c	\geq 4,000 (Btu/h)/gal and < 2 gal	0.62 - 0.00 19V, EF	DOE 10 CFR Part 430
Instantaneous water heaters, gas	≥ 200,000 Btu/h	≥ 4,000 Btu/h/gal and < 10 gal	80% E _t	ANSI Z21.10.3
	≥ 200,000 Btu/h	\geq 4,000 Btu/h/gal and \geq 10 gal	$80\% E_t$ (Q/800 + 110 $\sqrt{\nabla}$)SL, Btu/h	ANSI 221.10.5
Standard material	≤ 105,000 Btu/h	≥ 20 gal	0.59 - 0.0019V, EF	DOE 10 CFR Part 430
Storage water heaters, oil	≥ 105,000 Btu/h	< 4,000 Btu/h/gal	$80\% E_t$ (Q/800 + 110 $\sqrt{\nabla}$)SL, Btu/h	ANSI Z21.10.3
	≤ 210,000 Btu/h	≥ 4,000 Btu/h/gal and < 2 gal	0.59 - 0.0019V, EF	DOE 10 CFR Part 430
Instantaneous water heaters, oil	> 210,000 Btu/h	\geq 4,000 Btu/h/gal and < 10 gal	80% E,	ANSI Z21.10.3
	> 210,000 Btu/h	\geq 4,000 Btu/h/gal and \geq 10 gal	$78\% E_t$ (Q/800 + 110 $\sqrt{\nabla}$)SL, Btu/h	AN SI Z21.10.5
Hot water supply boilers, gas and oil	≥ 300,000 Btu/h and < 12,500,000 Btu/h	\geq 4,000 Btu/h/gal and <10 gal	80% E _t	
Hot water supply boilers, gas	≥ 300,000 Btu/h and < 12,500,000 Btu/h	≥ 4,000 Btu/h/gal and ≥ 10 gal	$\frac{80\% E_t}{(Q/800 + 110 \sqrt{V})SL, Btu/h}$	ANSI Z21.10.3
Hot water supply boilers, oil	> 300,000 Btu/h and < 12,500,000 Btu/h	> 4,000 Btu/h/gal and > 10 gal	$78\% E_t$ (Q/800 + 110 \sqrt{V})SL, Btu/h	
Pool heaters, gas and oil	All	_	82% E,	ASHRAE 146
Heat pump pool heaters	All	—	4.0 COP	AHRI 1160
Unfired storage tanks	All	_	Minimum insulation requirement R-12.5 ($h \cdot ft^2 \cdot {}^\circ F)/Btu$	(none)

For SI: °C = [(°F) - 32]/1.8, 1 British thermal unit per hour = 0.2931 W, 1 gallon = 3.785 L, 1 British thermal unit per hour per gallon = 0.078 W/L.
a. Energy factor (EF) and thermal efficiency (*E_i*) are minimum requirements. In the EF equation, *V* is the rated volume in gallons.
b. Standby loss (SL) is the maximum Btu/h based on a nominal 70°F temperature difference between stored water and ambient requirements. In the SL equation, *Q* is the nameplate input rate in Btu/h. In the equations for electric water heaters, *V* is the rated volume in gallons and *V_m* is the measured volume in gallons. In the SL equation for oil and gas water heaters and boilers, *V* is the rated volume in gallons and *V_m* is the measured volume in gallons. In the SL equation for oil and gas water heaters heater with these requirements whether with these requirements whether is designed to heat water to be a standard to be a standar c. Instantaneous water heaters with input rates below 200,000 Btu/h shall comply with these requirements where the water heater is designed to heat water to

temperatures 180°F or higher.

d. Electric water heaters with an input rating of 12 kW (40,950 Btu/hr) or less that are designed to heat water to temperatures of 180°F or greater shall comply with the requirements for electric water heaters that have an input rating greater than 12 kW (40,950 Btu/h).

C404.5 Efficient heated water supply piping. Heated water supply piping shall be in accordance with Section C404.5.1 or C404.5.2. The flow rate through ¹/ -inch (6.4 mm) piping shall be inot greater than 0.5 gpm (1.9 L/m). The flow rate through ⁷/ -inch (7.9 mm) piping shall be not greater than 1 gpm (3.8 L/m). The flow rate through ⁸/ -inch (9.5 mm) piping shall be not greater than 1.5 gpm (5.7 L/m).

C404.5.1 Maximum allowable pipe length method. The maximum allowable piping length from the nearest source of heated water to the termination of the fixture supply pipe shall be in accordance with the following. Where the piping contains more than one size of pipe, the largest size of pipe within the piping shall be used for determining the maximum allowable length of the piping in Table C404.5.1.

- 1. For a public lavatory faucet, use the "Public lavatory faucets" column in Table C404.5.1.
- For all other plumbing fixtures and plumbing appliances, use the "Other fixtures and appliances" column in Table C404.5.1.

C404.5.2 Maximum allowable pipe volume method. The water volume in the piping shall be calculated in accordance with Section C404.5.2.1. Water heaters, circulating water systems and heat trace temperature maintenance systems shall be considered sources of heated water.

The volume from the nearest source of heated water to the termination of the fixture supply pipe shall be as follows:

- 1. For a public lavatory faucet: not more than 2 ounces (0.06 L).
- For other plumbing fixtures or plumbing appliances; not more than 0.5 gallon (1.89 L).

C404.5.2.1 Water volume determination. The volume shall be the sum of the internal volumes of pipe, fittings, valves, meters and manifolds between the near-

est source of heated water and the termination of the fixture supply pipe. The volume in the piping shall be determined from the "Volume" column in Table C404.5.1. The volume contained within fixture shutoff valves, within flexible water supply connectors to a fixture fitting and within a fixture fitting shall not be included in the water volume determination. Where heated water is supplied by a recirculating system or heat-traced piping, the volume shall include the portion of the fitting on the branch pipe that supplies water to

C404.6 Heated-water circulating and temperature maintenance systems. Heated-water circulation systems shall be in accordance with Section C404.6.1. Heat trace temperature maintenance systems shall be in accordance with Section C404.6.2. Controls for hot water storage shall be in accordance with Section C404.6.3. Automatic controls, temperature sensors and pumps shall be *accessible*. Manual controls shall be *readily accessible*.

the fixture.

C404.6.1 Circulation systems. Heated-water circulation systems shall be provided with a circulation pump. The system return pipe shall be a dedicated return pipe or a cold water supply pipe. Gravity and thermo-syphon circulation systems shall be prohibited. Controls for circulating hot water system pumps shall start the pump based on the identification of a demand for hot water within the occupancy. The controls shall automatically turn off the pump when the water in the circulation loop is at the desired temperature and when there is no demand for hot water.

C404.6.2 Heat trace systems. Electric heat trace systems shall comply with IEEE 515.1. Controls for such systems shall be able to automatically adjust the energy input to the heat tracing to maintain the desired water temperature in the piping in accordance with the times when heated water is used in the occupancy. Heat trace shall be arranged to be turned off automatically when there is no hot water demand.

Comment [NAV18]: Reads "5/16-inch"
Comment [NAV19]: Reads "3/8-inch"

NOMINAL PIPE SIZE (inches)	VOLUME (liquid ounces per foot length)	MAXIMUM PIPING LENGTH (feet)	
(inches)	(inquia ounces per root length)	Public lavatory faucets	Other fixtures and appliance
1/4	0.33	6	50
⁵ / ₁₆	0.5	4	50
³ / ₈	0.75	3	50
1/2	1.5	2	43
⁵ / ₈	2	1	32
3/4	3	0.5	21
7/8	4	0.5	16
1	5	0.5	13
11/4	8	0.5	8
1 ¹ / ₂	11	0.5	6
2 or larger	18	0.5	4

TABLE C404.5.1

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 liquid ounce = 0.030 L, 1 gallon = 128 ounces.

C404.6.3 Controls for hot water storage. The controls on pumps that circulate water between a water heater and a heated-water storage tank shall limit operation of the pump from heating cycle startup to not greater than 5 minutes after the end of the cycle.

C404.7 Demand recirculation controls. A water distribution system having one or more recirculation pumps that pump water from a heated-water supply pipe back to the heated-water source through a cold-water supply pipe shall be a *demand recirculation water system*. Pumps shall have controls that comply with both of the following:

- The control shall start the pump upon receiving a signal from the action of a user of a fixture or appliance, sensing the presence of a user of a fixture or sensing the flow of hot or tempered water to a fixture fitting or appliance.
- 2. The control shall limit the temperature of the water entering the cold-water piping to 104°F (40°C).

C404.8 Drain water heat recovery units. Drain water heat recovery units shall comply with CSA B55.2. Potable waterside pressure loss shall be less than 10 psi (69 kPa) at maximum design flow. For Group R occupancies, the efficiency of drain water heat recovery unit efficiency shall be in accordance with CSA B55.1.

C404.9 Energy consumption of pools and permanent spas. (**Mandatory**). The energy consumption of pools and permanent spas shall be controlled by the requirements in Sections C404.9.1 through C404.9.3.

C404.9.1 Heaters. The electric power to all heaters shall be controlled by a readily accessible on-off switch that is an integral part of the heater, mounted on the exterior of the heater, or external to and within 3 feet (914 mm) of the heater. Operation of such switch shall not change the setting of the heater thermostat. Such switches shall be in addition to a circuit breaker for the power to the heater. Gas-or LPG-fired heaters shall not be equipped with continuously burning ignition pilots.

C404.9.2 Time switches. Time switches or other control methods that can automatically turn off and on heaters and pump motors according to a preset schedule shall be installed for heaters and pump motors. Heaters and pump motors that have built-in time switches shall be in compliance with this section.

Exceptions:

- 1. Where public health standards require 24-hour pump operation.
- 2. Pumps that operate solar- and waste-heat-recovery pool heating systems.

C404.9.3 CoversOutdoor heated pools, spas and hot tubs. - Outdoor heated pools-and, outdoor per- manent spas and outdoor hot tubs shall derive no less than be provided with a vapor-retardant cover or other approved vapor retardant means.

Exception: Where more than 70 percent of the energy for heating, computed over an operating season, is from site-recovered energy such as from a heat pump or solar

energy source, covers or other vapor retardant meansshall not be required.

C404.9.4 Heated pools in conditioned space. For heated pools that are located within the conditioned space, not less than 25 percent of the annual energy consumption of pool operation and not less than 50 percent of the peak design space heating, ventilation, and cooling requirements for the space in which the pool is located shall be by one or both of the following:

- 1. An onsite renewable energy system.
- 2. A heat recovery system.

C404.10 Energy consumption of portable spas (Mandatory). The energy consumption of electric-powered portable spas shall be controlled by the requirements of APSP 14.

C404.11 Service water-heating system commissioning and completion requirements. Service water-heating systems, swimming pool water-heating systems, spa water-heating systems and the controls for those systems shall be commissioned and completed in accordance with Section C408.2.

SECTION C405 ELECTRICAL POWER AND LIGHTING SYSTEMS

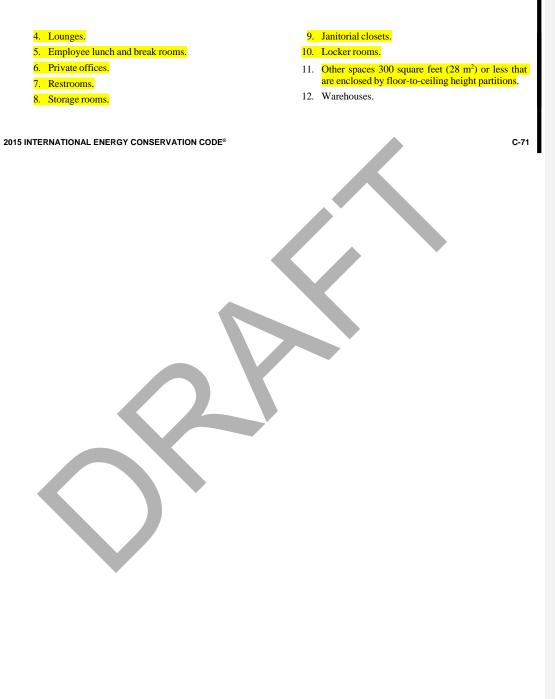
C405.1 General (Mandatory). This section covers lighting system controls, the maximum lighting power for interior and exterior applications and electrical energy consumption.

Exception: Dwelling units within commercial buildings shall not be required to comply with Sections C405.2 through C405.5, provided that not less than 75 percent of the lamps in permanently installed lighting fixtures shall be high-efficacy lamps or not less than 75 percent of the permanently installed lighting fixtures shall contain only high-efficacy lamps.

Exception: Low-voltage lighting.

they comply with Section R404.1.

Walk-in coolers, walk-in freezers, refrigerated warehouse coolers and refrigerated warehouse freezers shall comply with Section C403.2.15 or C403.2.16.


C405.2 Lighting controls (Mandatory). Lighting systems shall be provided with controls as specified in Sections C405.2.1, C405.2.2, C405.2.3, C405.2.4 and C405.2.5.

Exceptions: Lighting controls are not required for the following:

- 1. Areas designated as security or emergency areas that are required to be continuously lighted.
- 2. Interior exit stairways, interior exit ramps and exit passageways.
- 3. Emergency egress lighting that is normally off.

C405.2.1 Occupant sensor controls. Occupant sensor controls shall be installed to control lights in the following space types:

- 1. Classrooms/lecture/training rooms.
- 2. Conference/meeting/multipurposerooms.
- 3. Copy/print rooms.

C405.2.1.1 Occupant sensor control function. Occupant sensor controls in spaces other than warehouses specified in Section C405.2.1 shall comply with the following:

- 1. Automatically turn off lights within 30 minutes of all occupants leaving the space.
- Be manual on or controlled to automatically turn the lighting on to not more than 50 percent power.

Exception: Full automatic-on controls shall be permitted to control lighting in public corridors, stairways, restrooms, primary building entrance areas and lobbies, and areas where manual-on operation would endanger the safety or security of the room or building occupants.

 Shall incorporate a *manual control* to allow occupants to turn lights off.

C405.2.1.2 Occupant sensor control function in warehouses. In warehouses, the lighting in aisleways and open areas shall be controlled with occupant sensors that automatically reduce lighting power by not less than 50 percent when the areas are unoccupied. The occupant sensors shall control lighting in each aisleway independently and shall not control lighting beyond the aisleway being controlled by the sensor.

C405.2.2 Time-switch controls. Each area of the building that is not provided with *occupant sensor controls* complying with Section C405.2.1.1 shall be provided with *time switch controls* complying with Section C405.2.2.1.

Exception: Where a *manual control* provides light reduction in accordance with Section C405,2.2.2, automatic controls shall not be required for the following:

- 1. Sleeping units.
- 2. Spaces where patient care is directly provided.
- 3. Spaces where an automatic shutoff would endanger occupant safety or security.
- 4. Lighting intended for continuous operation.
- 5. Shop and laboratory classrooms

C405.2.2.1 Time-switch control function. Each space provided with *time-switch controls* shall also be provided with a *manual control* for light reduction in accordance with Section C405.2.2.2. Time-switch *controls* shall include an override switching device that complies with the following:

- 1. Have a minimum 7-day clock.
- Be capable of being set for seven different day types per week.
- Incorporate an automatic holiday "shutoff" feature, which turns off all controlled lighting loads for at least 24 hours and then resumes normally scheduled operations.
- Have program backup capabilities, which prevent the loss of program and time settings for at least 10 hours, if power is interrupted.

- 5. Include an override switch that complies with the following:
 - 5.1. The override switch shall be a manual control.
 - 5.2. The override switch, when initiated, shall permit the controlled lighting to remain on for not more than 2 hours.
 - 5.3. Any individual override switch shall control the lighting for an area not larger than 5,000 square feet (465 m²).
- Exceptions:
 - 1. Within malls, arcades, auditoriums, single-tenant retail spaces, industrial facilities and arenas:
 - 1.1. The time limit shall be permitted to be greater than 2 hours, provided that the override switch is a captive key device.
 - 1.2. The area controlled by the override switch is permitted to be greater than 5,000 square feet (465 m²), but shall not be greater than 20,000 square feet (1860 m²).

2. Where provided with *manual control*, the following areas are not required to have light reduction control:

- 2.1. Spaces that have only one luminaire with a rated power of less than 100 watts.
- 2.2. Spaces that use less than 0.6 watts per square foot (6.5 W/m^2) .
- 2.3. Corridors, equipment rooms, public lobbies, electrical or mechanical rooms.

C405.2.2.2 Light-reduction controls. Spaces required to have light-reduction controls shall have a *manual control* that allows the occupant to reduce the connected lighting load in a reasonably uniform illumination pattern by at least 50 percent. Lighting reduction shall be achieved by one of the following or another *approved* method:

- 1. Controlling all lamps or luminaires.
- 2. Dual switching of alternate rows of luminaires, alternate luminaires or alternate lamps.
- 3. Switching the middle lamp luminaires independently of the outer lamps.
- 4. Switching each luminaire or each lamp.

Exception: Light reduction controls are not required in daylight zones with daylight responsive controls complying with Section C405.2.3. Comment [NAV20]: Stakeholders(FYI): In 2011 CBES, this was the "Automatic Lighting Shutoff" requirement (505.2.2.2) for buildings >5,000 SF.

C405.2.2.3 Manual controls. *Manual controls* for lights shall comply with the following:

- 1. Shall be readily accessible to occupants.
- Shall be located where the controlled lights are visible, or shall identify the area served by the lights and indicate their status.

C405.2.3 Daylight-responsive controls. Daylight-responsive controls complying with Section C405.2.3.1 shall be provided to control the electric lights within daylight zones in the following spaces:

- Spaces with a total of more than 150 watts of general lighting within sidelight daylight zones complying with Section C405.2.3.2. General lighting does not include lighting that is required to have specific application control in accordance with Section C405.2.4.
- Spaces with a total of more than 150 watts of general lighting within toplight daylight zones complying with Section C405.2.3.3.

Exceptions: Daylight responsive controls are not required for the following:

- Spaces in health care facilities where patient care is directly provided.
- 2. Dwelling units and sleeping units.
- Lighting that is required to have specific application control in accordance with Section C405.2.4.
- Sidelight daylight zones on the first floor above grade in Group A-2 (Such as restaurants and banquet halls or buildings containing food preparation areas) and Group M_(Mercantile, such as grocery stores, department stores, gas stations, etc.) occupancies.

C405.2.3.1 Daylight-responsive control function. Where required, *daylight-responsive controls* shall be provided within each space for control of lights in that space and shall comply with all of the following:

 Lights in toplight *daylight zones* in accordance with Section C405.2.3.3 shall be controlled independently of lights in sidelight *daylight zones* in accordance with Section C405.2.3.2.

(a) Section view

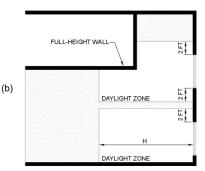
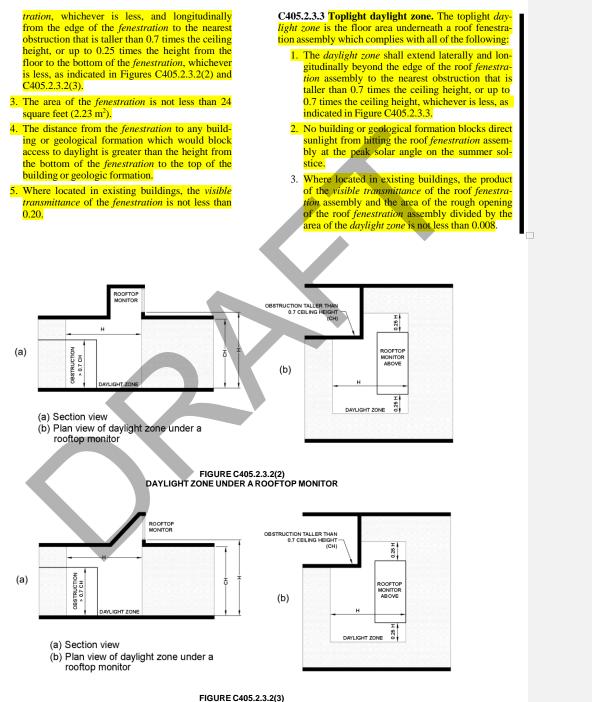
(b) Plan view of daylight zone under a rooftop monitor

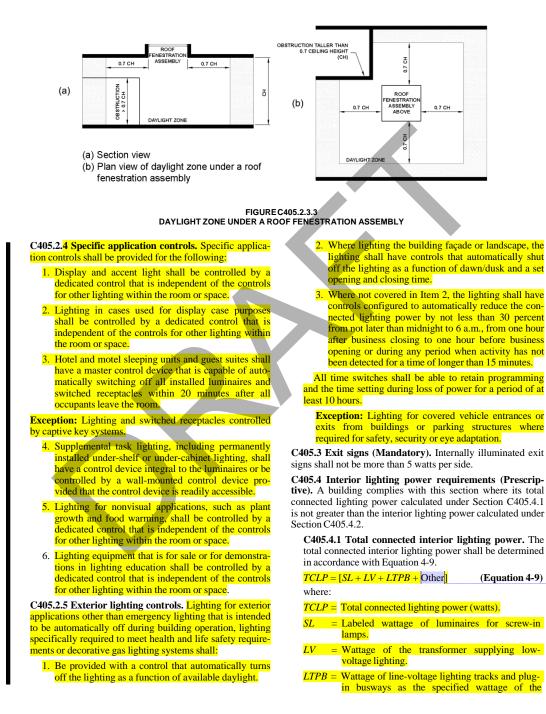
- Daylight responsive controls within each space shall be configured so that they can be calibrated from within that space by authorized personnel.
- 3. Calibration mechanisms shall be *readily accessible*.
- 4. Where located in offices, classrooms, laboratories and library reading rooms, *daylight responsive controls* shall dim lights continuously from full light output to 15 percent of full light output or lower.
- Daylight responsive controls shall be capable of a complete shutoff of all controlled lights.
- Lights in sidelight daylight zones in accordance with Section C405.2.3.2 facing different cardinal orientations [i.e., within 45 degrees (0.79 rad) of due north, east, south, west] shall be controlled independently of each other.

Exception: Up to 150 watts of lighting in each space is permitted to be controlled together with lighting in a daylight zone facing a different cardinal orientation.

C405.2.3.2 Sidelight daylight zone. The sidelight *daylight zone* is the floor area adjacent to vertical *fenestration* which complies with all of the following:

- 1. Where the fenestration is located in a wall, the daylight zone shall extend laterally to the nearest full-height wall, or up to 1.0 times the height from the floor to the top of the fenestration, and longitudinally from the edge of the fenestration to the nearest full-height wall, or up to 2 feet (610 mm), whichever is less, as indicated in Figure C405.2.3.2(1).
- 2. Where the *fenestration* is located in a rooftop monitor, the *daylight zone* shall extend laterally to the nearest obstruction that is taller than 0.7 times the ceiling height, or up to 1.0 times the height from the floor to the bottom of the *fenes*.


FIGURE C405.2.3.2(1)

DAYLIGHT ZONE ADJACENT TO FENESTRATION IN A WALL

2015 INTERNATIONAL ENERGY CONSERVATION CODE®

C-73

Comment [NAV21]: Stakeholders (FYI): New calculation method in 2015 IECC

luminaires, but at least 30 W/lin. ft. (100 W/lin m), or the wattage limit of the system's circuit breaker, or the wattage limit of other permanent current-limiting devices on the system.

Other = The wattage of all other luminaires and lighting sources not covered previously and associated with interior lighting verified by data supplied by the manufacturer or other *approved* sources.

Exceptions:

- 1. The connected power associated with the following lighting equipment is not included in calculating total connected lighting power.
 - 1.1. Professional sports arena playing field lighting.
 - 1.2. Lighting in sleeping units, provided that the lighting complies with Section R404.1.
 - 1.3. Emergency lighting automatically off during normal building operation.
 - 1.4. Lighting in spaces specifically designed for use by occupants with special lighting needs, including those with visual impairment and other medical and age-related issues.
 - 1.5. Lighting in interior spaces that have been specifically designated as a registered interior historic landmark.
 - 1.6. Casino gaming areas.
 - 1.7. Mirror lighting in dressing rooms.
- Lighting equipment used for the following shall be exempt provided that it is in addition to general lighting and is controlled by an independent control device:
 - 2.1. Task lighting for medical and dental purposes.
 - 2.2. Display lighting for exhibits in galleries, museums and monuments.
- Lighting for theatrical purposes, including performance, stage, film production and video production.
- 4. Lighting for photographic processes.
- 5. Lighting integral to equipment or instrumentation and installed by the manufacturer.
- 6. Task lighting for plant growth or maintenance.
- 7. Advertising signage or directional signage.
- In restaurant buildings and areas, lighting for food warming or integral to food preparation equipment.
- 9. Lighting equipment that is for sale.
- 10. Lighting demonstration equipment in lighting education facilities.

11. Lighting *approved* because of safety or emergency considerations, inclusive of exit lights.

COMMERCIAL ENERGY EFFICIENCY

- 12. Lighting integral to both open and glassenclosed refrigerator and freezer cases.
- Lighting in retail display windows, provided the display area is enclosed by ceiling-height partitions.
- 14. Furniture-mounted supplemental task lighting that is controlled by automatic shutoff.
- 15. Exit signs.

C405.4.2 Interior lighting power. The total interior lighting power allowance (watts) is determined according to Table C405.4.2(1) using the Building Area Method, or Table C405.4.2(2) using the Space-by-Space Method, for all areas of the building covered in this permit.

C405.4.2.1 Building Area Method. For the Building Area Method, the interior lighting power allowance is the floor area for each building area type listed in Table C405.4.2(1) times the value from Table C405.4.2(1) for that area. For the purposes of this method, an "area" shall be defined as all contiguous spaces that accommodate or are associated with a single building area type, as listed in Table C405.4.2(1). Where this method is used to calculate the total interior lighting power for an entire building, each building area type shall be treated as a separate area.

C405.4.2.2 Space-by-Space Method. For the Spaceby-Space Method, the interior lighting power allowance is determined by multiplying the floor area of each space times the value for the space type in Table C405.4.2(2) that most closely represents the proposed use of the space, and then summing the lighting power allowances for all spaces. Trade-offs among spaces are permitted.

405.4.2.2.1 Additional interior lighting power. Where using the Space-by-Space Method, an increase in the interior lighting power allowance is permitted for specific lighting functions. Additional power shall be permitted only where the specified lighting is installed and automatically controlled separately from the general lighting, to be turned off during nonbusiness hours. This additional power shall be used only for the specified luminaires and shall not be used for any other purpose. An increase in the interior lighting power allowance is permitted in the following cases:

1. For lighting equipment to be installed in sales areas specifically to highlight merchandise, the additional lighting power shall be determined in accordance with Equation 4-10.

Additional interior lighting power allowance = 500 watts + (Retail Area $1 \cdot 0.6 \text{ W/ft}^2$) + (Retail Area $2 \cdot 0.6 \text{ W/ft}^2$) + (Retail Area $3 \cdot 1.4 \text{ W/ft}^2$) + (Retail Area $4 \cdot 2.5 \text{ W/ft}^2$)

(Equation 4-10)

where:

Retail Area 1 =	The floor area for all prod- ucts not listed in Retail Area 2, 3 or 4.
Retail Area 2 =	The floor area used for the

- sale of vehicles, sporting goods and small electronics. Retail Area 3 = The floor area used for the
- sale of furniture, clothing, cosmetics and artwork.
- Retail Area 4 = The floor area used for the sale of jewelry, crystal and china.

Exception: Other merchandise categories are permitted to be included in Retail Areas 2 through 4, provided that justification documenting the need for additional lighting power based on visual inspection, contrast,

TABLE C405.4.2(1)_ (2011 CBES values in parentheses and red font) INTERIOR LIGHTING POWER ALLOWANCES: BUILDING AREA METHOD

BUILDING AREA TYPE	LPD (w/ft ²)
Automotive facility	0.8 (0.9)
Convention center5	1.01 (1.2)
Courthouse	1.01 (1.2)
Dining: bar lounge/leisure	1.01 (1.2)
Dining: cafeteria/fast food	0.9 (1.4)
Dining: family	0.95 (1.6)
Dormitory	0.57 (1.0)
Exercise center	0.84 (1.0)
Fire station	0.67 (0.8)
Gymnasium	0.94 (1.1)
Health care clinic	0.9 (1 <u>.0</u>)
Hospital	1.05 (1.2)
Hotel/Motel	0.87 (1.0)
Library	1.19 (1.3)
Manufacturing facility	1.17 (1.3)
Motion picture theater	0.76 (1.2)
Multifamily	0.51 (0.7)
Museum	1.02 (1.1)
Office	0.82 (0.9)
Parking garage	0.21 (0.3)
Penitentiary	0.81 (1.0)
Performing arts theater	1.39 (1.6)
Police station	0.87 (1 <u>.0</u>)
Post office	0.87 (1.1)
Religious building	1 (1.3)
Retail	1.26 (1.4)
School/university	0.87 (1.2)
Sports arena	0.91 (1.1)
Town hall	0.89 (1.1)
Transportation	0.7 (1.0)
Warehouse	0.66 (0.6)
Workshop	1.19 (1.4)

or other critical display is *approved* by the eode official code official or authority having jurisdiction.

2. For spaces in which lighting is specified to be installed in addition to the general lighting for the purpose of decorative appearance or for highlighting art or exhibits, provided that the additional lighting power shall be not more than 10.7 w/ft^2 of such spaces.

TABLEC405.4.2(2) (2011 CBES values in parentheses and red font) INTERIOR LIGHTING POWER ALLOWANCES: SPACE-BY-SPACE METHOD

SPACE METHOD COMMON SPACE TYPES*	LPD (watts/sq.ft)
Atrium	
Less than 40 feet in height	0.03 per foot in total height
Greater than 40 feet in height	0.40 + 0.02 per foot in total height
Audience seating area	
In an auditorium	0.63 (0.9)
In a convention center	0.82 (0.9)
In a gymnasium	0.65 (N/A)
In a motion picture theater	1.14 (1.2)
In a penitentiary	0.28 (0.5)
In a performing arts theater	2.43 (2.6)
In a religious building	1.53 (2.4)
In a sports arena	0.43 (0.4)
Otherwise	0.43 (N/A)
Banking activity area	1.01 (1.5)
Breakroom (See Lounge/Breakroom)	
Classroom/lecture hall/training room	
In a penitentiary	1.34 (1.3)
Otherwise	1.24 (1.3)
Conference/meeting/multipurpose room	1.23 (1.2)
Copy/print room	0.72 (N/A)
Corridor	
In a facility for the visually impaired (and not used primarily by the staff) ^b	0.92 <mark>(N/A)</mark>
In a hospital	0.79 <mark>(N/A)</mark>
In a manufacturing facility	0.41 (N/A)
Otherwise	0.66 (0.7)
Courtroom	1.72 (1.9)
Computer room	1.71 <mark>(N/A)</mark>
Dining area	
In a penitentiary	0.96 (1.1)
In a facility for the visually impaired (and not used primarily by the staff) ^b	1.9 (N/A)
In bar/lounge or leisure dining	1.07 (1.4)
In cafeteria or fast food dining	0.65 (N/A)
In family dining	0.89 (1.4)
Otherwise	0.65 (N/A)
Electrical/mechanical room	0.95 (1.1)
Emergency vehicle garage	0.56 <mark>(N/A)</mark>

Comment [NAV22]: 2011 CBES in parentheses and red font

(continued)

2015 INTERNATIONAL ENERGY CONSERVATION CODE®

C-77

TABLE C405.4.2(2)—continued INTERIOR LIGHTING POWER ALLOWANCES: SPACE-BY-SPACE METHOD

SPACE-BY-SPACE METH	OD
COMMON SPACE TYPES ^a	LPD (watts/sq.ft)
Food preparation area	1.21 (1.2)
Guest room	0.47 (1.1)
Laboratory	
In or as a classroom	1.43 (1.3)
Otherwise	1.81 <mark>(1.8)</mark>
Laundry/washing area	0.6 <mark>(N/A)</mark>
Loading dock, interior	0.47 <mark>(N/A)</mark>
Lobby	
In a facility for the visually impaired (and not used primarily by the staff) ^b	1.8 (<mark>N/A)</mark>
For an elevator	0.64 (N/A)
In a hotel	1.06 (2.1)
In a motion picture theater	0.59 (1)
In a performing arts theater	2 (3.3)
Otherwise	0.9 (1.1)
Locker room	0.75 (0.8)
Lounge/breakroom	
In a healthcare facility	0.92 (N/A)
Otherwise	0.73 (N/A)
Office	
Enclosed	1.11 (1.1)
Open plan	0.98 (1)
Parking area, interior	0.19 (0.2)
Pharmacy area	1.68 (N/A)
Restroom	
In a facility for the visually impaired (and not used primarily by the staff ^b	1.21 (N/A)
Otherwise	0.98 (1)
Sales area	1.59 (1.6)
Seating area, general	0.54 (N/A)
Stairway (See space containing stairway)	
Stairwell	0.69 (0.7)
Storage room	0.63 (0.8)
Vehicular maintenance area	0.67 (0.7)
Workshop	1.59 (1.6)
BUILDING TYPE SPECIFIC SPACE TYPES [®]	LPD (watts/sq.ft)
Facility for the visually impaired ^b	
In a chapel (and not used primarily by the staff)	2.21 (N/A)
In a recreation room (and not used primarily by the staff)	2.41 (N/A)
Automotive (See Vehicular Maintenance Area	above)
Convention Center—exhibit space	1.45 (1.5)
Convention Center—exhibit space Dormitory—living quarters	1.45 (1.5) 0.38 (1.1)
Convention Center—exhibit space Dormitory—living quarters Fire Station—sleeping quarters	
Convention Center—exhibit space Dormitory—living quarters Fire Station—sleeping quarters Gymnasium/fitness center	0.38 (1.1)
Convention Center—exhibit space Dormitory—living quarters Fire Station—sleeping quarters	0.38 (1.1)

(continued)

TABLE C405.4.2(2)—continued INTERIOR LIGHTING POWER ALLOWANCES: SPACE-BY-SPACE METHOD

BUILDING TYPE SPECIFIC SPACE TYPES*	LPD (watts/sq.ft)
healthcare facility	
In an exam/treatment room	1.66 (1.7)
In an imaging room	1.51 (1.3)
In a medical supply room	0.74 (1.4)
In a nursery	0.88 (0.9)
In a nurse's station	0.71 (1)
In an operating room	2.48 (2.2)
In a patient room	0.62 (0.7)
In a physical therapy room	0.91 (0.9)
In a recovery room	1.15 (1.2)
Library	
In a reading area	1.06 (1.2)
In the stacks	1.71 (1.7)
Manufacturing facility	
In a detailed manufacturing area	1.29 (1.3)
In an equipment room	0.74 (1)
In an extra high bay area (greater than 50' floor-to-ceiling height)	1.05 (1.1)
In a high bay area (25-50' floor-to-ceiling height)	1.23 (1.2)
In a low bay area (less than 25' floor-to- ceiling height)	1.19 (1.2)
Museum	
In a general exhibition area	1.05 (1)
In a restoration room	1.02 (1.7)
Performing arts theater-dressing room	0.61 (1.1)
Post Office—Sorting Area	0.94 (0.9)
Religious buildings	•
In a fellowship hall	0.64 (0.6)
In a worship/pulpit/choir area	1.53 (2.4)
Retail facilities	
In a dressing/fitting room	0.71 (0.9)
In a mall concourse	1.1 (1.6)
Sports arena—playing area	
For a Class I facility	3.68 (3)
For a Class II facility	2.4 (1.9)
For a Class III facility	1.8 (1.2)
For a Class IV facility	1.2 (0.7)
Transportation facility	
In a baggage/carousel area	0.53 (1)
In an airport concourse	0.36 (0.6)
At a terminal ticket counter	0.8 (1.5)
Warehouse—storage area	
For medium to bulky, palletized items	0.58 (0.6)
For smaller, hand-carried items	0.95 (1.4)

a. In cases where both a common space type and a building area specific space type are listed, the building area specific space type shall apply
b. A 'Facility for the Visually Impaired' is a facility that is licensed or will be licensed by local or state authorities for senior long-term care, adult daycare, senior support or people with special visual needs.

test procedure listed in DOE 10 CFR 431. The efficiency $% \left({{\left[{{{\rm{CFR}}} \right]}_{\rm{T}}}} \right)$

C405.5 Exterior lighting (Mandatory). Where the power for exterior lighting is supplied through the energy service to the building, all exterior lighting shall comply with Section C405.5.1. Appropriate exterior lighting designs including maximum exterior illuminance levels and cut-off exterior fixtures may be required by the District Environmental Commission for Act 250 projects.

Exception: Where approved because of historical, safety,

signage or emergency considerations.

C405.5.1 Exterior building lighting power. The total exterior lighting power allowance for all exterior building applications is the sum of the base site allowance plus the individual allowances for areas that are to be illuminated and are permitted in Table C405.5.2(2) for the applicable lighting zone. Trade-offs are allowed only among exterior lighting applications listed in Table C405.5.2(2), in the Tradable Surfaces section. The lighting zone for the building exterior is determined from Table C405.5.2(1) unless otherwise specified by the local jurisdiction.

Exception: Lighting used for the following exterior applications is exempt where equipped with a control device independent of the control of the nonexempt lighting:

- 1. Specialized signal, directional and marker lighting associated with transportation.
- 2. Advertising signage or directional signage.
- Integral to equipment or instrumentation and is installed by its manufacturer.
- 4. Theatrical purposes, including performance, stage, film production and video production.
- 5. Athletic playing areas.
- 6. Temporary lighting.
- 7. Industrial production, material handling, transportation sites and associated storage areas.
- 8. Theme elements in theme/amusement parks.
- 9. Used to highlight features of public monuments and registered historic landmark structures or buildings.

TABLE C405.5.2(1) EXTERIOR LIGHTING ZONES

LIGHTING ZONE	DESCRIPTION
1	Developed areas of national parks, state parks, forest land, and rural areas
2	Areas predominantly consisting of residential zoning, neighborhood business districts, light industrial with limited nighttime use and residential mixed-use areas
3	All other areas not classified as lighting zone 1, 2 or 4
4	High-activity commercial districts in major metropoli- tan areas as designated by the local land use planning authority

C405.6 Electrical energy consumption (Mandatory). Each dwelling unit located in a Group R-2 building <u>(see occupancy classification)</u> shall have a separate electrical meter.

C405.7 Electrical transformers (Mandatory). Electric transformers shall meet the minimum efficiency requirements of Table C405.7 as tested and rated in accordance with the

shall be verified through certification under an approved certification program or, where a certification program does not exist, the equipment efficiency ratings shall be supported by data furnished by the transformer manufacturer.

Exceptions: The following transformers are exempt:

- 1. Transformers that meet the *Energy Policy Act of* 2005 exclusions based on the DOE 10 CFR 431 definition of special purpose applications.
- Transformers that meet the *Energy Policy Act of* 2005 exclusions that are not to be used in general purpose applications based on information provided in DOE 10 CFR 431.
- 3. Transformers that meet the *Energy Policy Act of* 2005 exclusions with multiple voltage taps where the highest tap is at least 20 percent more than the lowest tap.
- 4. Drive transformers.
- 5. Rectifier transformers.
- 6. Auto-transformers.
- 7. Uninterruptible power system transformers.
- 8. Impendance transformers.
- 9. Regulating transformers.
- 10. Sealed and nonventilating transformers.
- 11. Machine tool transformers.

2015 INTERNATIONAL ENERGY CONSERVATION CODE®

- 12. Welding transformers.
- 13. Grounding transformers.
- 14. Testing transformers.

C405.8 Electrical motors (Mandatory). Electric motors shall meet the minimum efficiency requirements of Tables C405.8(1) through C405.8(4) when tested and rated in accordance with the DOE 10 CFR 431. The efficiency shall be verified through certification under an approved certification program or, where a certification program does not exist, the equipment efficiency ratings shall be supported by data furnished by the motor manufacturer.

C405.9 Vertical and horizontal transportation systems and equipment. Vertical and horizontal transportation systems and equipment shall comply with this section.

C405.9.1 Elevator cabs. For the luminaires in each elevator cab, not including signals and displays, the sum of the lumens divided by the sum of the watts shall be not less than 35 lumens per watt. Ventilation fans in elevators that do not have their own air-conditioning system shall not consume more than 0.33 watts/cfm at the maximum rated speed of the fan. Controls shall be provided that will de-energize ventilation fans and lighting systems when the elevator is stopped, unoccupied and with its doors closed for over 15 minutes.

C405.9.2 Escalators and moving walks. Escalators and moving walks shall comply with ASME A17.1/CSA B44 and shall have automatic controls configured to reduce speed to the minimum permitted speed in accordance with

C-79

ASME A17.1/CSA B44 or applicable local code when not conveying passengers.

C405.9.2.1 Regenerative drive. An escalator designed either for one-way down operation only or for reversible operation shall have a variable frequency regenerative drive that supplies electrical energy to the building electrical system when the escalator is loaded with passengers whose combined weight exceeds 750 pounds (340 kg).

	_		OWANCES FOR BUILD LIGHTII	NG ZONES					
		Zone 1	Zone 2	Zone 3	Zone 4				
Base Site Allowance (Base allowance is usable in tradable or nontradable surfaces.)		500 W	600 W	750 W	1300 W				
	Uncovered Parking Areas								
	Parking areas and drives	0.04 W/ft ²	0.06 W/ft ²	0.10 W/ft ²	0.13 W/ft ²				
	-		Building Grounds						
	Walkways less than 10 feet wide	0.7 W/linear foot	0.7 W/linear foot	0.8 W/linear foot	1.0 W/linear foot				
	Walkways 10 feet wide or greater, plaza areas special feature areas	0.14 W/ft ²	0.14 W/ft ²	0.16 W/ft ²	0.2 W/ft ²				
	Stairways	0.75 W/ft ²	1.0 W/ft ²	1.0 W/ft ²	1.0 W/ft ²				
Fradable Surfaces	Pedestrian tunnels	0.15 W/ft ²	0.15 W/ft ²	0.2 W/ft ²	0.3 W/ft ²				
Lighting power lensities for uncovered			Building Entrances and Ex	its					
parking areas, building grounds, building	Main entries	20 W/linear foot of door width	20 W/linear foot of door width	30 W/linear foot of door width	30 W/linear foot of door width				
entrances and exits, canopies and overhangs and outdoor sales areas	Other doors	20 W/linear foot of door width							
are tradable.)	Entry canopies	0.25 W/ft ²	0.25 W/ft ²	0.4 W/ft ²	0.4 W/ft ²				
	Sales Canopies								
	Free-standing and attached	0.6 W/ft ²	0.6 W/ft ²	0.8 W/ft ²	1.0 W/ft ²				
	Outdoor Sales								
	Open areas (including vehicle sales lots)	0.25 W/ft ²	0.25 W/ft ²	0.5 W/ft ²	0.7 W/ft ²				
	Street frontage for vehicle sales lots in addition to "open area" allowance	No allowance	10 W/linear foot	10 W/linear foot	30 W/linear foot				
Nontradable Surfaces	Building facades	Noallowance	0.075 W/ft ² of gross above-grade wall area	0.113 W/ft ² of gross above-grade wall area	0.15 W/ft ² of gross above-grade wall area				
Lighting power lensity calculations for the following applications can be	Automated teller machines (ATM) and night depositories	270 W per location plus 90 W per additional ATM per location	270 W per location plus 90 W per additional ATM per location	270 W per location plus 90 W per additional ATM per location	270 W per location plus 90 W per additional ATM per location				
used only for the specific application and cannot be traded	Entrances and gatehouse inspection stations at guarded facilities	0.75 W/f ² of covered and uncovered area	0.75 W/ft ² of covered and uncovered area	0.75 W/ft ² of covered and uncovered area	0.75 W/ft ² of covered and uncovered area				
etween surfaces or vith other exterior ighting. The ollowing allowances re in addition to any llowance otherwise	Loading areas for law enforcement, fire, ambulance and other emergency service vehicles	0.5 W/ft ² of covered and uncovered area	0.5 W/ft ² of covered and uncovered area	0.5 W/ft ² of covered and uncovered area	0.5 W/ft ² of covered and uncovered area				
permitted in the 'Tradable Surfaces''	Drive-up windows/doors	400 W per drive-through							
section of this table.)	Parking near 24-hour retail entrances	800 W per main entry							

For SI: 1 foot = 304.8 mm, 1 watt per square foot = $W/0.0929\ m^2.$ W = watts.

TABLE C405.7 MINIMUM NOMINAL EFFICIENCY LEVELS FOR 10 CFR 431 LOW-VOLTAGE DRY-TYPE DISTRIBUTION TRANSFORMERS SINGLE-PHASE TRANSFORMERS THREE-PHASE TRANSFORMERS kVAª Efficiency (%) kVA Efficiency (%) 15 97.7 15 97.0 25 98.0 30 97.5 37.5 98.2 45 97.7 50 98.3 75 98.0 75 98.5 112.5 98.2 100 98.6 150 98.3 167 98.7 225 98.5 250 98.8 300 98.6 98.9 333 500 98.7 750 98.8 98.9 1000

a. kiloVolt-Amprating.

b. Nominal efficiencies shall be established in accordance with the DOE 10 CFR 431 test procedure for low-voltage dry-type transformers.

			RIP-PROOF MO		TOTALLY ENCLOSED FAN-COOLED MOTORS		
MOTOR	NUMBER OF POLES	2	4	6	2	4	6
HORSEPOWER	Synchronous Speed (RPM)	3600	1800	1200	3600	1800	1200
1		77.0	85.5	82.5	77.0	85.5	82.5
1.5		84.0	86.5	86.5	84.0	86.5	87.5
2		85.5	86.5	87.5	85.5	86.5	88.5
3		85.5	89.5	88.5	86.5	89.5	89.5
5		86.5	89.5	89.5	88.5	89.5	89.5
7.5		88.5	91.0	90.2	89.5	91.7	91.0
10		89.5	91.7	91.7	90.2	91.7	91.0
15		90.2	93.0	91.7	91.0	92.4	91.7
20		91.0	93.0	92.4	91.0	93.0	91.7
25		91.7	93.6	93.0	91.7	93.6	93.0
30		91.7	94.1	93.6	91.7	93.6	93.0
40		92.4	94.1	94.1	92.4	94.1	94.1
50		93.0	94.5	94.1	93.0	94.5	94.1
60		93.6	95.0	94.5	93.6	95.0	94.5
75		93.6	95.0	94.5	93.6	95.4	94.5
100		93.6	95.4	95.0	94.1	95.4	95.0
125		94.1	95.4	95.0	95.0	95.4	95.0
150		94.1	95.8	95.4	95.0	95.8	95.8
200		95.0	95.8	95.4	95.4	96.2	95.8
250		95.0	95.8	95.4	95.8	96.2	95.8
300		95.4	95.8	95.4	95.8	96.2	95.8
350		95.4	95.8	95.4	95.8	96.2	95.8
400		95.8	95.8	95.8	95.8	96.2	95.8
450		95.8	96.2	96.2	95.8	96.2	95.8
500		95.8	96.2	96.2	95.8	96.2	95.8

a. Nominal efficiencies shall be established in accordance with DOE 10 CFR 431.

NUMBER OF POLES		OPEN DRIP-PROOF MOTORS				TOTALLY	ENCLOSED F	AN-COOLED	MOTOR
MOTOR HORSEPOWER	NOMBER OF FOLEO	2	4	6	8	2	4	6	8
HURSEPOWER	Synchronous Speed (RPM)	3600	1800	1200	900	3600	1800	1200	900
1		NR	82.5	80.0	74.0	75.5	82.5	80.0	74.
1.5		82.5	84.0	84.0	75.5	82.5	84.0	85.5	77.
2		84.0	84.0	85.5	85.5	84.0	84.0	86.5	82.
3		84.0	86.5	86.5	86.5	85.5	87.5	87.5	84.
5		85.5	87.5	87.5	87.5	87.5	87.5	87.5	84.
7.5		87.5	88.5	88.5	88.5	88.5	89.5	89.5	85.
10		88.5	89.5	90.2	89.5	89.5	89.5	89.5	88.
15		89.5	91.0	90.2	89.5	90.2	91.0	90.2	88.
20		90.2	91.0	91.0	90.2	90.2	91.0	90.2	89.
25		91.0	91.7	91.7	90.2	91.0	92.4	91.7	89.
30		91.0	92.4	92.4	91.0	91.0	92.4	91.7	91.
40		91.7	93.0	93.0	91.0	91.7	93.0	93.0	91.
50		92.4	93.0	93.0	91.7	92.4	93.0	93.0	91.
60		93.0	93.6	93.6	92.4	93.0	93.6	93.6	91.
75		93.0	94.1	93.6	93.6	93.0	94.1	93.6	93.
100		93.0	94.1	94.1	93.6	93.6	94.5	94.1	93.
125		93.6	94.5	94.1	93.6	94.5	94.5	94.1	93.
150		93.6	95.0	94.5	93.6	94.5	95.0	95.0	93.
200		94.5	95.0	94.5	93.6	95.0	95.0	95.0	94.
250		94.5	95.4	95.4	94.5	95.4	95.0	95.0	94.
300		95.0	95.4	95.4	NR	95.4	95.4	95.0	NF
350		95.0	95.4	95.4	NR	95.4	95.4	95.0	NF
400		95.4	95.4	NR	NR	95.4	95.4	NR	NF
450		95.8	95.8	NR	NR	95.4	95.4	NR	NF
500		95.8	95.8	NR	NR	95.4	95.8	NR	NR

TABLE C405.8(2)

NR = No requirement. a. Nominal efficiencies shall be established in accordance with DOE 10 CFR 431.

		OPEN MOTORS					
MOTOR	Number of Poles	2	4	6			
HORSEPOWER	Synchronous Speed (RPM)	3600	1800	1200			
0.25		65.6	69.5	67.5			
0.33		69.5	73.4	71.4			
0.50		73.4	78.2	75.3			
0.75		76.8	81.1	81.7			
1		77.0	83.5	82.5			
1.5		84.0	86.5	83.8			
2		85.5	86.5	N/A			
3		85.5	86.9	N/A			

a. Average full load efficiencies shall be established in accordance with 10 CFR 431.

TABLE C405.8(4) MINIMUM AVERAGE FULL LOOD EFFICIENCY FOR CAPACITOR-START CAPACITOR-RUN AND CAPACITOR-RUN SMALL ELECTRIC MOTORS* MOTOR HORSEPOWER Synchronous 3600 1800 1200

HORSEPOWER	Synchronous Speed (RPM)	3600	1800	1200
0.25		66.6	68.5	62.2
0.33		70.5	72.4	66.6
0.50		72.4	76.2	76.2
0.75		76.2	81.8	80.2
1		80.4	82.6	81.1
1.5		81.5	83.8	N/A
2		82.9	84.5	N/A
3		84.1	N/A	N/A

a. Average full load efficiencies shall be established in accordance with 10 CFR 431.

SECTION C406 ADDITIONAL EFFICIENCY PACKAGE OPTIONS AND RENEWABLE REQUIREMENTS

C406.1 Requirements. Buildings shall comply with at least one of the following:

- 1. More efficient HVAC performance in accordance with Section C406.2.
- 2. Reduced lighting power density system in accordance with Section C406.3.
- 3. Enhanced lighting controls in accordance with Section C406.4.
- On-site supply of renewable energy in accordance with Section C406.5.
- 5. Provision of a dedicated outdoor air system for certain HVAC equipment in accordance with Section C406.6.
- b. High-efficiency service water heating in accordance with Section C406.7.

C406.1.1-2 Tenant spaces. Tenant spaces shall comply with Section C406.2, C406.3, C406.4, C406.6 or C406.7. Alternatively, tenant spaces shall comply with Section C406.5 where the entire building is in compliance.

C406.2 More efficient HVAC equipment performance. Equipment shall exceed the minimum efficiency requirements listed in Tables C403.2.3(1) through C403.2.3(7) by 10 percent, in addition to the requirements of Section C403. Where multiple performance requirements are provided, the equipment shall exceed all requirements by 10 percent. *Variable refrigerant flow systems* shall exceed the energy efficiency provisions of ANSI/ASHRAE/IES 90.1-2013 by 10 percent. Equipment not listed in Tables C403.2.3(1) through C403.2.3(7) shall be limited to 10 percent of the total build- ing system capacity.

C406.3 Reduced lighting power density. The total interior lighting power (watts) of the building shall be determined by using 90 percent of the lighting power values specified in Table C405.4.2(1) times the floor area for the building types, or by using 90 percent of the interior lighting power allow-ance calculated by the Space-by-Space Method in Section C405.4.2.

Comment [NAV23]: Stakeholders: Considering requirement for "solar-ready roof"

2015 INTERNATIONAL ENERGY CONSERVATION CODE®

COMMERCIAL ENERGY EFFICIENCY

C-83

C406.4 Enhanced digital lighting controls. Interior lighting in the building shall have the following enhanced lighting controls that shall be located, scheduled and operated in accordance with Section C405.2.2.

- 1. Luminaires shall be capable of continuous dimming.
- Luminaires shall be capable of being addressed individually. Where individual addressability is not available for the luminaire class type, a controlled group of not more than four luminaries shall be allowed.
- 3. Not more than eight luminaires shall be controlled together in a *daylight zone*.
- 4. Fixtures shall be controlled through a digital control system that includes the following function:
 - 4.1. Control reconfiguration based on digital addressability.
 - 4.2. Load shedding.
 - 4.3. Individual user control of overhead general illumination in open offices.
 - 4.4. Occupancy sensors shall be capable of being reconfigured through the digital control system.
- Construction documents shall include submittal of a Sequence of Operations, including a specification outlining each of the functions in Item 4 of this section.
- 6. Functional testing of lighting controls shall comply with Section C408.

C406.5 On-site renewable energy. Total minimum ratings of on-site renewable energy systems shall comply with one of the following:

- 1. Provide not less than 0.50 watts per square foot (5.4 W/ $m^2)$ of conditioned floor area.
- Provide not less than 3 percent of the energy used within the building for building mechanical and service water heating equipment and lighting regulated in Chapter 4.

C406.6 Dedicated outdoor air system. Buildings covered by Section C403.4 shall be equipped with an independent ventilation system designed to provide not less than the minimum 100-percent outdoor air to each individual occupied space, as specified by the *International Mechanical CodeASHRAE Standard* 62.1-2013. The ventilation system shall be capable of total energy recov- ery. The HVAC system shall include supply-air temperature controls that automatically reset the supply-air temperature in response to representative building loads, or to outdoor air temperatures. The controls shall reset the supply-air temperature at least 25 percent of the difference between the design supply-air temperature.

C406.7 Reduced energy use in service water heating. Buildings shall be of the following types to use this compliance method:

1. Group R-1: Boarding houses, hotels or motels.

- 2. Group I-2: Hospitals, psychiatric hospitals and nursing homes.
- 3. Group A-2: Restaurants and banquet halls or buildings containing food preparation areas.
- 4. Group F: Laundries.
- 5. Group R-2: Buildings with residential occupancies.
- 6. Group A-3: Health clubs and spas.
- Buildings showing a service hot water load of 10 percent or more of total building energy loads, as shown with an energy analysis as described in Section C407.

C406.7.1 Load fraction. The building service water-heating system shall have one or more of the following that are sized to provide not less than 60 percent of hot water requirements, or sized to provide 100 percent of hot water requirements if the building shall otherwise comply with Section C403.4.7:

- 1. Waste heat recovery from service hot water, heatrecovery chillers, building equipment, process equipment, or a combined heat and power system.
- 2. Solar water-heating systems.

SECTION C407 TOTAL BUILDING PERFORMANCE

C407.1 Scope. This section establishes criteria for compliance using total building performance. The following systems and loads shall be included in determining the total building performance: heating systems, cooling systems, service water heating, fan systems, lighting power, receptacle loads and process loads.

C407.2 Mandatory requirements. Compliance with this section requires that the criteria of Sections C402.5, C403.2, C404 and C405 be met.

C407.3 Performance based compliance. Compliance based on total building performance requires that a proposed building (proposed design) be shown to have an annual energy cost that is less than or equal to the annual energy cost of the standard reference design. Energy prices shall be taken from a source approved by the code official, such as the Department of Energy, Energy Information Administration's State Energy Price and Expenditure Report. Code officials shall be permitted to require time of use pricing in energy cost calculations. Nondepletable energy collected off site shall be treated and priced the same as purchased energy. Energy from nondepletable energy sources collected on site shall be omitted from the annual energy cost of the proposed design.

Exception: Jurisdictions that require site energy (1 kWh = 3413 Btu) rather than energy cost as the metric of comparison.

C407.4 Documentation. Documentation verifying that the methods and accuracy of compliance software tools conform to the provisions of this section shall be provided to the *code official*.

Comment [NAV24]: Stakeholders (FYI): Per 2005 and 2011 CBES, this section is removed. Users choosing a total building performance compliance path will be directed to ASHRAE 90.1-2013 **C407.4.1 Compliance report.** Permit submittals shall include a report documenting that the proposed design has annual energy costs less than or equal to the annual energy costs of the *standard reference design*. The compliance documentation shall include the following information:

- 1. Address of the building.
- An inspection checklist documenting the building component characteristics of the proposed design as specified in Table C407.5.1(1). The inspection checklist shall show the estimated annual energy cost for both the standard reference design and the proposed design.
- 3. Name of individual completing the compliance report.
- 4. Name and version of the compliance software tool.

C407.4.2 Additional documentation. The *code official* shall be permitted to require the following documents:

- 1. Documentation of the building component characteristics of the *standard reference design*.
- 2. Thermal zoning diagrams consisting of floor plans showing the thermal zoning scheme for standard reference design and proposed design.
- 3. Input and output reports from the energy analysis simulation program containing the complete input and output files, as applicable. The output file shall include energy use totals and energy use by energy source and end use served, total hours that space conditioning loads are not met and any errors or warning messages generated by the simulation tool as applicable.
- 4. An explanation of any error or warning mes appearing in the simulation tool output.
- 5. A certification signed by the builder providing the building component characteristics of the *proposed design* as given in Table C407.5.1(1).

C407.5 Calculation procedure. Except as specified by this section, the *standard reference design* and *proposed design* shall be configured and analyzed using identical methods and techniques.

C407.5.1 Building specifications. The *standard reference design* and *proposed design* shall be configured and analyzed as specified by Table C407.5.1(1). Table C407.5.1(1) shall include by reference all notes contained in Table C402.1.4.

C407.5.2 Thermal blocks. The standard reference design and proposed design shall be analyzed using identical thermal blocks as specified in Section C407.5.2.1, C407.5.2.2 or C407.5.2.3.

COMMERCIAL ENERGY EFFICIENCY

C407.5.2.1 HVAC zones designed. Where HVAC zones are defined on HVAC design drawings, each HVAC zone shall be modeled as a separate thermal block.

Exception: Different HVAC *zones* shall be allowed to be combined to create a single thermal block or identical thermal blocks to which multipliers are applied provided:

- 1. The space use classification is the same throughout the thermal block.
- 2. All HVAC *zones* in the thermal block that are adjacent to glazed exterior walls face the same orientation or their orientations are within 45 degrees (0.79 rad) of each other.

3. All of the *zones* are served by the same HVAC system or by the same kind of HVAC system.

C407.5.2.2 HVAC zones not designed. Where HVAC *zones* have not yet been designed, thermal blocks shall be defined based on similar internal load densities, occupancy, lighting, thermal and temperature schedules, and in combination with the following guidelines:

- Separate thermal blocks shall be assumed for interior and perimeter spaces. Interior spaces shall be those located more than 15 feet (4572 mm) from an exterior wall. Perimeter spaces shall be those located closer than 15 feet (4572 mm) from an exterior wall.
- 2. Separate thermal blocks shall be assumed for spaces adjacent to glazed exterior walls: a separate zone shall be provided for each orientation, except orientations that differ by not more than 45 degrees (0.79 rad) shall be permitted to be considered to be the same orientation. Each zone shall include floor area that is 15 feet (4572 mm) or less from a glazed perimeter wall, except that floor area within 15 feet (4572 mm) of glazed perimeter walls having more than one orientation shall be divided proportionately between zones.
- Separate thermal blocks shall be assumed for spaces having floors that are in contact with the ground or exposed to ambient conditions from *zones* that do not share these features.
- Separate thermal blocks shall be assumed for spaces having exterior ceiling or roof assemblies from *zones* that do not share these features.

C407.5.2.3 Multifamily residential buildings. Residential spaces shall be modeled using one thermal block per space except that those facing the same orientations are permitted to be combined into one thermal block. Corner units and units with roof or floor loads shall only be combined with units sharing these features.

BUILDING COMPONENT CHARACTERISTICS	STANDARD REFERENCE DESIGN	PROPOSED DESIGN
Space use classification	Same as proposed	The space use classification shall be chosen in - accordance with Table C405.5.2 for all areas of the - building covered by this permit. Where the space use - classification for a building is not known, the building is hall be categorized as an office building.
	Type: Insulation entirely above deck	As proposed
	Gross area: same as proposed	As proposed
Roofs	U-factor: as specified in Table C402.1.4	As proposed
	Solar absorptance: 0.75	As proposed
	Emittance: 0.90	As proposed
	Type: Mass wall where proposed wall is mass; otherwise steel-framed - wall	As proposed
	Gross area: same as proposed	As proposed
Walls, above-grade	U-factor: as specified in Table C402.1.4	As proposed
	Solar absorptance: 0.75	As proposed
	Emittance: 0.90	As proposed
	Type: Mass wall	As proposed
Walls, below-grade	Gross area: same as proposed	As proposed
wails, below-grade	U-Factor: as specified in Table C402.1.4 with insulation layer on interior- side of walls	As proposed
	Type: joist/framed floor	As proposed
Floors, above-grade	Gross area: same as proposed	As proposed
	U-factor: as specified in Table C402.1.4	As proposed
Floors, slab-on-grade	Type: Unheated	As proposed
rioors, stab-oir grade	F-factor: as specified in Table C402.1.4	As proposed
	Type: Swinging	As proposed
Opaque doors	Area: Same as proposed	As proposed
	U-factor: as specified in Table C402.1.4	As proposed
Vertical fenestration other than	Area 1. The proposed glazing area; where the proposed glazing area is less- than 40 percent of above grade wall area. 2. 40 percent of above grade wall area; where the proposed glazing area- is 40 percent or more of the above grade wall area.	As proposed
opaque doors	U-factor: as specified in Table C402.4	As proposed
	SHGC: as specified in Table C402.4 except that for climates with no- requirement (NR) SHGC = 0.40 shall be used	As proposed
	External shading and PF: None	As proposed
<u>Skylights</u>	Area 1. The proposed skylight area; where the proposed skylight area is- less than 3 percent of gross area of roof assembly. 2. 3 percent of gross area of roof assembly; where the proposed- skylight area is 3 percent or more of gross area of roof assembly	As proposed
	U-factor: as specified in Table C402.4	As proposed
	SHGC: as specified in Table C402.4 except that for climates with no-requirement (NR) SHGC = 0.40 shall be used.	As proposed
Lighting, interior	The interior lighting power shall be determined in accordance with Section C405.4.2. Where the occupancy of the building is not known,- the lighting power density shall be 1.0 Watt per square foot (10.7 W/- m ²) based on the categorization of buildings with unknown space- classification as offices.	As proposed
Lighting, exterior	The lighting power shall be determined in accordance with Table- C405.5.2(2). Areas and dimensions of tradable and nontradable- surfaces shall be the same as proposed.	As proposed

C-86

BUILDING COMPONENT CHARACTERISTICS	STANDARD REFERENCE DESIGN	PROPOSED DESIGN
Internal gains	Same as proposed	Receptacle, motor and process loads shall be- modeled and estimated based on the space use- classification. All end use load components within- and associated with the building shall be modeled to include, but not be limited to, the following exhaust fame, parking garage ventilation fams, exterior building lighting, swimming pool heaters and pumps, elevators, escalators, refrigeration – equipment and cooking equipment.
Schedules	Same as proposed	Operating schedules shall include hourly profiles for daily operation and shall account for variations- between weekdays, weekends, holidays and any- seasonal operation. Schedules shall model the time dependent variations in occupancy, illumination, - receptacle loads, thermostat settings, mechanical- ventilation. If VAC equipment availability, service- hot water usage and any process loads. The- schedules shall be typical of the proposed building type as determined by the designer and approved- by the jurisdiction.
Mechanical ventilation	Same as proposed	As proposed, in accordance with Section C403.2.6
	Fuel type: same as proposed design	As proposed
	Equipment type*: as specified in Tables C407.5.1(2) and C407.5.1(3)	As proposed
	Efficiency: as specified in Tables C403.2.3(4) and C403.2.3(5)	As proposed
Heating systems	Capacity's sized proportionally to the capacities in the proposed design- based on sizing runs, and shall be established such that no smaller- number of unmet heating load hours and no larger heating capacity safety factors are provided than in the proposed design.	As proposed
	Fuel type: same as proposed design	As proposed
	Equipment type: as specified in Tables C407.5.1(2) and C407.5.1(3)	As proposed
	Efficiency: as specified in Tables C403.2.3(1), C403.2.3(2) and C403.2.3(3)	As proposed
Cooling systems	Capacity ⁴ : sized proportionally to the capacities in the proposed design- based on sizing runs; and shall be established sheh that no smaller- number of unnet cooling load hours and no larger cooling capacity- safety factors are provided than in the proposed design.	As proposed
	Economizer*: same as proposed, in accordance with Section C403.3.	As proposed
	Fuel type: same as proposed	As proposed
		For Group R, as proposed multiplied by SWHF.
Service water heating*	Efficiency: as specified in Table C404.2	For other than Group R, as proposed multiplied by efficiency as provided by the manufacturer of the DWHR unit.
	Capacity: same as proposed Where no service water hot water system exists or is specified in the- proposed design, no service hot water heating shall be modeled.	As proposed
here no heating system exists e standard reference design an te ratio between the capacities sign and proposed design. here no cooling system exists armal zone. The system charac an economizer is required in	rep factor, DWHR = Drain water heat recovery. or has been specified, the heating system shall be modeled as fossil fue # proposed design. used in the annual simulations and the capacities determined by sizing or no cooling system has been specified, the cooling system shall be mod steriotics shall be identical in both the standard reference design and prop accordance with Table C403.3 and where no economizer exists or is the standard reference design in accordance with Section C403.3.	runs shall be the same for both the standard reference eled as an air cooled single-zone system, one unit per osed design.
e SWHF shall be applied as fo		
Where potable water from	the DWHR unit supplies not less than one shower and not greater than t	we showers of which the drain water from the same

Subjects rows amonger die Dwirkt unit und Swiff = [1 - (DWHR unit efficiency * 0.33)].
 Where potable water from the DWHR unit supplies not less than five showers and not greater than six showers, of which the drain water from the schowers flows through the DWHR unit, then SWHF = [1 - (DWHR unit efficiency * 0.26)].
 Where Items 1 through 3 are not met, SWHF = 1.0.

TABLE C407.5.1(2) HVAC SYSTEMS MAP				
CONDENSER COOLING	HEATING SYSTEM	STANDA	RD REFERENCE DESIGN HVC SY	STEM TYPE [®]
SOURCE*	CLASSIFICATION ^b	Single-zone Residential System	Single-zone Nonresidential System	All Other
	Electric resistance	System 5	System 5	System 1
Water/ground	Heat pump	System 6	System 6	System 6
	Fossil fuel	System 7	System 7	System 2
	Electric resistance	System 8	System 9	System 3
Air/none	Heat pump	System 8	System 9	System 3
	Fossil fuel	System 10	System 11	System 4

a. Select "water/ground" where the proposed design system condenser is water or evaporatively cooled; select "air/none" where the condenser is air cooled. Closed-circuit dry coolers shall be considered air cooled. Systems utilizing district cooling shall be treated as if the condenser water type were "water." Where no mechanical cooling is specified or the mechanical cooling system in the proposed design does not require heat rejection, the system shall be treated as if the condenser water type were "Air." For proposed design heat source or groundwater source heat pumps, the standard reference design HVAC system shall be water source heat pump (including air source and water source), or fuel fired. Systems with inte the trading district heating (steam or hot water) and systems with no heating capability shall be treated as if the heating system type were "fossil fuel." For systems with mixed fuel heating sources, the system or systems that use the secondary heating source type (the one with the smallest total installed output capacity for the spaces served by the system) shall be modeled identically in the standard reference design HVAC system type.
e. Select the standard reference design HVAC system or system suitary for evaluating source type shall be used to determine standard reference design HVAC system type.

e. Select the standard reference design HVAC system category: The system under "single zone residential system" shall be selected where the HVAC system in the proposed design is a single-zone system and serves a residential space. The system under "single zone nonresidential system" shall be selected where the HVAC system in the proposed design is a single-zone system and serves other than residential spaces. The system under "single zone nonresidential system" shall be selected where the HVAC system in the proposed design is a single-zone system and serves other than residential spaces. The system under "single zone nonresidential spaces" shall be selected where the HVAC system in the proposed design is a single-zone system and serves other than residential spaces. other cases.

TABLE C407.5.1(3) SPECIFICATIONS FOR THE STANDARD REFERENCE DESIGN HVAC SYSTEM DESCRIPTIONS

SYSTEM NO.	SYSTEM TYPE	FAN CONTROL	COOLING TYPE	HEATING TYPE
4	Variable air volume with parallel fan-powered boxes*	VAV ⁴	Chilled water*	Electric resistance
2	Variable air volume with reheat*	VAV ⁴	Chilled water*	Hot water fossil fuel boilerf
3	Packaged variable air volume with parallel fan – powered boxes*	¥A¥ ⁴	Direct expansion*	Electric resistance
4	Packaged variable air volume with reheat ^b	VAV ⁴	Direct expansion ^e	Hot water fossil fuel boiler
5	Two-pipe fan coil	Constant volume ⁱ	Chilled water*	Electric resistance
6	Water source heat pump	Constant volume ⁺	Direct expansion*	Electric heat pump and boiler*
7	Four-pipe fan coil	Constant volume ⁴	Chilled water*	Hot water fossil fuel boiler
8	Packaged terminal heat pump	Constant volume ⁴	Direct expansion*	Electric heat pump ⁴
9	Packaged rooftop heat pump	Constant volume ⁺	Direct expansion*	Electric heat pump ⁺
10	Packaged terminal air conditioner	Constant volume*	Direct expansion	Hot water fossil fuel boiler ⁴
++	Packaged rooftop air conditioner	Constant volume ⁺	Direct expansion	Fossil fuel furnace

For SI: 1 foot = 304.8 mm, 1 cfm/ft² = 0.4719 L/s, 1 Btu/h = 0.293/W, °C = [(°F) - 32/1.8].

a. VAV with parallel boxes: Fans in parallel VAV fan powered boxes shall be sized for 50 percent of the peak design flow rate and shall be modeled with 0.35 W/cfm fan power. Minimum volume setpoints for fan powered boxes shall be equal to the minimum rate for the space required for ventilation consistent with Section C403.4.5, Exception 4. Supply air temperature setpoints for VAV reheat boxes shall be constant at the design condition.
 b. VAV with reheat: Minimum volume setpoints for VAV reheat boxes shall be 0.4 cfm/ft² of floor area. Supply air temperature shall be reset based on zone

b. VAV with reheat: Minimum volume setpoints for VAV reheat boxes shall be 0.4 cfm/ft² of floor area. Supply air temperature shall be reset based on zone demand from the design temperature difference to a 10°F temperature difference under minimum load conditions. Design airflow rates shall be sized for the reset supply air temperature, i.e., a 10°F temperature difference.

e. Direct expansion: The fuel type for the cooling system shall match that of the cooling system in the proposed design.

- d. VAV: Where the proposed design system has a supply, return or relief fan motor 25 hp or larger, the corresponding fan in the VAV system of the standard reference design shall be modeled assuming a variable speed drive. For smaller fans, a forward curved centrifugal fan with inlet vanes shall be modeled. Where the proposed design's system has a direct digital control system at the zone level, static pressure setpoint reset based on zone requirements in accordance with Section C403.41.1 shall be modeled.
- c. Chilled water: For systems using purchased chilled water, the chillers are not explicitly modeled and chilled water costs shall be based as determined in Sections C407.5.1 (4) as a function of standard reference design 's chiller plant shall be modeled with chillers having the number as indicated in Table C407.5.1 (4) as a function of standard reference building chiller plant load up pe as indicated in Table C407.5.1 (4) as a function of standard reference design shall have chillers with the same fuel types and with capacities having the same proportional capacity as the proposed design's chillers for each fuel type. Chilled water supply temperature shall be modeled at 44°F design supply temperature and 56°F return temperature. Pping losses shall not be modeled in either building model. Chilled water supply water temperature shall be reset in accordance with Section C403.4.3.2 Pump system power for each pumping system shall be the same as the proposed design; where the proposed design has no chilled water pumps, the standard reference design pump power shall be 22 W/gpm (equal to a pump operating against a 75 foot head, 65 percent embined impeller and motor efficiency). The chilled water system shall be modeled as riding the pump curve or with variable speed drives when required in Section C403.4.3.3. The heat rejection device shall be an stal fan cooling tower with two speed fans where required in Section C403.4.4. Condenser water design supply temperature shall be 85°F or 10°F approach to design we tabult permension weather permis. Notify water temperature and design the same shall be modeled as riding the pump curve or with variable speed drives of 01°F. The tower shall be corted as some temperature whichever is lower, with a design conditions. Pump system power for each pumping system shall be the same same required in Section C403.4.4. Condenser water design supply temperature shall be to eaving water temperature and escipt pumping system shall be the same same required in Section C403.4.4. Condenser
- Each childe shall be modeled with separate condenser water and childed water pumps interfocked to operate with the associated childer. F. Fossil fuel boiler: For systems using purchased hot water or steam, the boilers are not explicitly modeled and hot water or steam costs shall be based on actual utility rates. Otherwise, the boiler plant shall use the same fuel as the proposed design and shall be natural draft. The standard reference design boiler plant shall be modeled with a single boiler where the standard reference design plant load is 600,000 Btu/h and less and with two equally sized boilers for plant capacities exceeding 600,000 Btu/h. Boilers shall be staged as required by the load. Hot water supply temperature shall be modeled at 180°F design supply temperature and 130°F return temperature. Piping losses shall not be modeled in either building model. Hot water supply water temperature shall be troposed design has no hot water pumps, the standard reference design pump power for each pumping system shall be the same as the proposed design; where the proposed design has no hot water pumps, the standard reference design pump power for each pumping only with continuous variable flow. Hot water pumps shall be modeled as riding the pump curve or with variable speed drives when required by Section C403.4.3.3. g. Electric heat pump and boiler: Water source heat pumps shall be connected to a common heat pump water loop controlled to maintain temperatures
- g- Electric heat pump and holler: Water source heat pumps shall be connected to a common heat pump water loop controlled to maintain temperatures between 60°F and 90°F. Heat rejection from the loop shall be provided by a boiler that uses the same fuel as the proposed design and shall be natural draft. Where no boilers exist in the proposed design, the standard reference building boilers shall be fossil fuel. The standard reference design boiler plant shall be modeled with a single boiler where the standard reference design plant load is 600,000 Btu/h or less and with two equally sized boilers for plant capacities exceeding 600,000 Btu/h or less and with two equally sized boilers for plant capacities exceeding 600,000 Btu/h. Boilers shall be staged as required by the load. Piping losses shall not be modeled in either building model. Pump system power shall be the same as the proposed design, where the proposed design has no pumps, the standard reference design plant capacities exact the transform opporting against a 75 foot head, with a 65 percent combined impeller and motor efficiency. Loop flow shall be variable with flow shutoff at each heat pump when its compressor cycles off as required by Section C403.4.3.3. Loop pumps shall be modeled as riding the pump curve or with variable seed drives when required by Section C403.4.3.3.
- h. Electric heat pump: Electric air source heat pumps shall be modeled with electric auxiliary heat. The system shall be controlled with a multistage space thermostat and an outdoor air thermostat wired to energize auxiliary heat only on the last thermostat stage and when outdoor air temperature is less than 40°F.
 i. Constant volume: Fans shall be controlled in the same manner as in the proposed design; i.e., fan operation whenever the space is occupied or fan operation eycled on calls for heating and cooling. Where the fan is modeled as cycling and the fan energy is included in the energy efficiency rating of the equipment, fan energy shall not be modeled explicitly.

TABLE C407.5.1(4) NUMBER OF CHILLERS			
TOTAL CHILLER PLANT CAPACITY	NUMBER OF CHILLERS		
≤ 300 tons	ŧ		
→ 300 tons, < 600 tons	2, sized equally		
<u>≥ 600 tons</u>	2 minimum, with chillers added so that no chiller is larger than 800 tons, all sized equally		

For SI: 1 ton = 3517 W.

	TABLEC407.5.1(5)- WATER CHILLER TYPES	
INDIVIDUAL CHILLER PLANT CAPACITY	ELECTRIC CHILLER TYPE	FOSSIL FUEL CHILLER TYPE
<u>≤ 100 tons</u>	Reciprocating	Single effect absorption, direct fired
> 100 tons, < 300 tons	Screw	Double-effect absorption, direct fired
≥ 300 tons	Centrifugal	Double-effect absorption, direct fired

For SI: 1 ton = 3517 W.

C407.6 Calculation software tools. Calculation procedures used to comply with this section shall be software tools capable of calculating the annual energy consumption of all building elements that differ between the *standard reference design* and the *proposed design* and shall include the follow-

ing capabilities.

- 1. Building operation for a full calendar year (8,760 hours).
- Climate data for a full calendar year (8,760 hours) and shall reflect approved coincident hourly data for temperature, solar radiation, humidity and wind speed for the building location.
- 3. Ten or more thermal zones.

4. Thermal mass effects.

- Hourly variations in occupancy, illumination, receptacle loads, thermostat settings, mechanical ventilation, HVAC equipment availability, service hot water usage and any process loads.
- 6. Part-load-performance curves for mechanical equipment.
- 7. Capacity and efficiency correction curves for mechanical heating and cooling equipment.
- Printed code official inspection checklist listing each of the proposed design component characteristics from Table C407.5.1(1) determined by the analysis to provide compliance, along with their respective performance ratings including, but not limited to, *R* value, *U*factor, SHGC, HSPF, AFUE, SEER, EF.

C407.6.1 Specific approval. Performance analysis tools complying with the applicable subsections of Section C407 and tested according to ASHRAE Standard 140 shall be permitted to be *approved*. Tools are permitted to be *approved* based on meeting a specified threshold for a jurisdiction. The *code official* shall be permitted to approve tools for a specified application or limited scope.

C407.6.2 Input values. Where calculations require input values not specified by Sections C402, C403, C404 and C405, those input values shall be taken from an *approved* source.

C407.6.3 Exceptional calculation methods. Where the simulation program does not model a design, material or device of the *proposed design*, an exceptional calculation method shall be used where approved by the *code official*. Where there are multiple designs, materials or devices that the simulation program does not model, each shall be calculated separately and exceptional savings determined for each. The total exceptional savings shall not constitute more than half of the difference between the baseline building performance and the proposed building performance for approval of an exceptional method shall include all of the following:

- 1. Step by step documentation of the exceptional calculation method performed, detailed enough to reproduce the results.
- 2. Copies of all spreadsheets used to perform the calculations.
- 3. A sensitivity analysis of energy consumption where each of the input parameters is varied from half to double the value assumed.
- 4. The calculations shall be performed on a time step basis consistent with the simulation program used.
- 5. The performance rating calculated with and without the exceptional calculation method.

SECTION C408 SYSTEM COMMISSIONING

C408.1 General. This section covers the commissioning of the building mechanical systems in Section C403 and electrical power and lighting systems in Section C405.

Comment [NAV25]: Stakeholders (FYI): This section is new to CBES.

Includes:

1.Mechanical Systems/SWH Commissioning (C408.2)

2.Lighting Systems Commissioning (C408.3)

Comment [NAV26]: Stakeholder input requested: Does this supplant the 2011 CBES Section 503.2.10 (Systems performance, verification and completion) or do any of those requirements need to be added here?

2011 CBES only applied to buildings >50,000 square feet, and applied to (1) Economizers, (2) VAV fan control and (3) Part load hydronic controls. **C408.2** Mechanical systems and service water-heating systems commissioning and completion requirements. Prior to the final mechanical and plumbing inspections, the *registered design professional* or *approved agency* shall provide evidence of mechanical systems *commissioning* and completion in accordance with the provisions of this section.

Construction document notes shall clearly indicate provisions for *commissioning* and completion requirements in accordance with this section and are permitted to refer to specifications for further requirements. Copies of all documentation shall be given to the owner or owner's authorized agent and made available to the *code officialcode official or authority having jurisdiction* upon request in accordance with Sections C408.2.4 and C408.2.5.

Exceptions: The following systems are exempt:

- Mechanical systems and service water heater systems in buildings where the total mechanical equipment capacity is less than 480,000 Btu/h (140.7 kW) cooling capacity and 600,000 Btu/h (175.8 kW) combined service water-heating and space-heating capacity.
- Systems included in Section C403.3 that serve individual dwelling units and sleeping units.

C408.2.1 Commissioning plan. A commissioning plan shall be developed by a registered design professional or approved agency and shall include the following items:

- A narrative description of the activities that will be accomplished during each phase of *commissioning*, including the personnel intended to accomplish each of the activities.
- A listing of the specific equipment, appliances or systems to be tested and a description of the tests to be performed.
- 3. Functions to be tested including, but not limited to, calibrations and economizer controls.
- Conditions under which the test will be performed. Testing shall affirm winter and summer design conditions and full outside air conditions.

5. Measurable criteria for performance.

C408.2.2 Systems adjusting and balancing. HVAC systems shall be balanced in accordance with generally accepted engineering standards. Air and water flow rates shall be measured and adjusted to deliver final flow rates within the tolerances provided in the product specifications. Test and balance activities shall include air system and hydronic system balancing.

C408.2.2.1 Air systems balancing. Each supply air outlet and *zone* terminal device shall be equipped with means for air balancing in accordance with the requirements of Chapter 6 of the *International Mechanical Code*. Discharge dampers used for air-system balancing are prohibited on constant-volume fans and variable-volume fans with motors 10 hp (18.6 kW) and larger. Air systems shall be balanced in a manner to first minimize throttling losses then, for fans with system power

COMMERCIAL ENERGY EFFICIENCY

of greater than 1 hp (0.746 kW), fan speed shall be adjusted to meet design flow conditions.

Exception: Fans with fan motors of 1 hp (0.74 kW) or less are not required to be provided with a means for air balancing.

C408.2.2.2 Hydronic systems balancing. Individual hydronic heating and cooling coils shall be equipped with means for balancing and measuring flow. Hydronic systems shall be proportionately balanced in a manner to first minimize throttling losses, then the pump impeller shall be trimmed or pump speed shall be adjusted to meet design flow conditions. Each hydronic system shall have either the capability to measure pressure across the pump, or test ports at each side of each pump.

Exceptions: The following equipment is not required to be equipped with a means for balancing or measuring flow:

1. Pumps with pump motors of 5 hp (3.7 kW) or less.

 Where throttling results in no greater than 5 percent of the nameplate horsepower draw above that required if the impeller were trimmed.

C408.2.3 Functional performance testing. Functional performance testing specified in Sections C408.2.3.1 through C408.2.3.3 shall be conducted.

C408.2.3.1 Equipment. Equipment functional performance testing shall demonstrate the installation and operation of components, systems, and system-to-system interfacing relationships in accordance with approved plans and specifications such that operation, function, and maintenance serviceability for each of the commissioned systems is confirmed. Testing shall include all modes and *sequence of operation*, including under full-load, part-load and the following emergency conditions:

1. All modes as described in the *sequence* of *operation*.

- 2. Redundant or automatic back-up mode.
- 3. Performance of alarms.
- 4. Mode of operation upon a loss of power and restoration of power.
- Exception: Unitary or packaged HVAC equipment listed in Tables C403.2.3(1) through C403.2.3(3) that do not require supply air economizers.

C408.2.3.2 Controls. HVAC and service water-heating control systems shall be tested to document that control devices, components, equipment and systems are calibrated and adjusted and operate in accordance with approved plans and specifications. Sequences of operation shall be functionally tested to document they operate in accordance with *approved* plans and specifications.

C408.2.3.3 Economizers. Air economizers shall undergo a functional test to determine that they operate in accordance with manufacturer's specifications.

C408.2.4 Preliminary commissioning report. A preliminary report of *commissioning* test procedures and results shall be completed and certified by the *registered design professional* or *approved agency* and provided to the building owner or owner's authorized agent. The report shall be organized with mechanical and service hot water findings in separate sections to allow independent review. The report shall be identified as "Preliminary Commissioning Report" and shall identify:

- Itemization of deficiencies found during testing required by this section that have not been corrected at the time of report preparation.
- Deferred tests that cannot be performed at the time of report preparation because of climatic conditions.
- Climatic conditions required for performance of the deferred tests.

C408.2.4.1 Acceptance of report. Buildings, or portions thereof, shall not be considered acceptable for a final inspection pursuant to Section C104.3 until the *code official_code official or authority having jurisdiction* has received a letter of transmittal from the building owner acknowledging that the building owner or owner's authorized agent has received the Preliminary Commissioning Report.

C408.2.4.2 Copy of report. The <u>code official code</u> <u>official or authority having jurisdiction</u> shall be permitted to require that a copy of the Preliminary Commissioning Report be made available for review by the <u>code official code official or authority having</u> jurisdiction.

C408.2.5 Documentation requirements. The *construction documents* shall specify that the documents described in this section be provided to the building owner or owner's authorized agent within 90 days of the date of receipt of the *certificate of occupancy*.

C408.2.5.1 Drawings. Construction documents shall include the location and performance data on each piece of equipment.

C408.2.5.2 Manuals. An operating and maintenance manual shall be provided and include all of the following:

- Submittal data stating equipment size and selected options for each piece of equipment requiring maintenance.
- Manufacturer's operation manuals and maintenance manuals for each piece of equipment requiring maintenance, except equipment not furnished as part of the project. Required routine maintenance actions shall be clearly identified.

3. Name and address of at least one service agency.

4. HVAC and service hot water controls system maintenance and calibration information, including wiring diagrams, schematics and control sequence descriptions. Desired or field-determined set points shall be permanently recorded on control drawings at control devices or, for digital control systems, in system programming instructions.

- 5. Submittal data indicating all selected options for each piece of lighting equipment and lighting controls.
- Operation and maintenance manuals for each piece of lighting equipment. Required routine maintenance actions, cleaning and recommended relamping shall be clearly identified.
- 7. A schedule for inspecting and recalibrating all lighting controls.
- A narrative of how each system is intended to operate, including recommended set points.

C408.2.5.3 System balancing report. A written report describing the activities and measurements completed in accordance with Section C408.2.2.

C408.2.5.4 Final commissioning report. A report of test procedures and results identified as "Final Commissioning Report" shall be delivered to the building owner or owner's authorized agent. The report shall be organized with mechanical system and service hot water system findings in separate sections to allow independent review. The report shall include the following:

1. Results of functional performance tests.

- Disposition of deficiencies found during testing, including details of corrective measures used or proposed.
- 3. Functional performance test procedures used during the commissioning process including measurable criteria for test acceptance, provided herein for repeatability.

Exception: Deferred tests that cannot be performed at the time of report preparation due to climatic conditions.

C408.3 Lighting system functional testing. Controls for automatic lighting systems shall comply with this section.

C408.3.1 Functional testing. Prior to passing final inspection, the *registered design professional* shall provide evidence that the lighting control systems have been tested to ensure that control hardware and software are calibrated, adjusted, programmed and in proper working condition in accordance with the *construction documents* and manufacturer's instructions. Functional testing shall be in accordance with Sections C408.3.1.1 and C408.3.1.2 for the applicable control type.

C408.3.1.1 Occupant sensor controls. Where *occupant sensor controls* are provided, the following procedures shall be performed:

- Certify that the occupant sensor has been located and aimed in accordance with manufacturer recommendations.
- 2. For projects with seven or fewer occupant sensors, each sensor shall be tested.

3. For projects with more than seven occupant sensors, testing shall be done for each unique combination of sensor type and space geometry. Where multiples of each unique combination of sensor type and space geometry are provided, not less than 10 percent, but in no case less than one, of each combination shall be tested unless the code official or authority having jurisdiction or design professional requires a higher percentage to be tested. Where 30 percent or more of the tested controls fail, all remaining identical combinations shall be tested.

For *occupant sensor controls* to be tested, verify the following:

- 3.1. Where occupant sensor controls include status indicators, verify correct operation.
- 3.2. The controlled lights turn off or down to the permitted level within the required time.
- 3.3. For auto-on occupant sensor controls, the lights turn on to the permitted level when an occupant enters the space.
- 3.4. For manual-on occupant sensor controls, the lights turn on only when manually activated.
- 3.5. The lights are not incorrectly turned on by movement in adjacent areas or by HVAC operation.

C408.3.1.2 Time-switch controls. Where time-switch controls are provided, the following procedures shall be performed:

- Confirm that the *time-switch control* is programmed with accurate weekday, weekend and holiday schedules.
- Provide documentation to the owner of *time-switch controls* programming including weekday, weekend, holiday schedules, and set-up and preference program settings.
- Verify the correct time and date in the time switch.
- Verify that any battery back-up is installed and energized.
- 5. Verify that the override time limit is set to not more than 2 hours.
- 6. Simulate occupied condition. Verify and document the following:
 - 6.1. All lights can be turned on and off by their respective area control switch.
 - 6.2. The switch only operates lighting in the enclosed space in which the switch is located.
- Simulate unoccupied condition. Verify and document the following:
 - 7.1. Nonexempt lighting turns off.

2015 INTERNATIONAL ENERGY CONSERVATION CODE®

- 7.2. Manual override switch allows only the lights in the enclosed space where the override switch is located to turn on or remain on until the next scheduled shutoff occurs.
- 8. Additional testing as specified by the *registered design professional*.

C408.3.1.3 Daylight responsive controls. Where *day-light responsive controls* are provided, the following shall be verified:

- Control devices have been properly located, field calibrated and set for accurate setpoints and threshold light levels.
- Daylight controlled lighting loads adjust to light level set points in response to available daylight.
- 3. The locations of calibration adjustment equipment are readily accessible only to authorized personnel.

C408.3.2 Documentation requirements. The *construction documents* shall specify that documents certifying that the installed lighting controls meet documented performance criteria of Section C405 are to be provided to the building owner within 90 days from the date of receipt of the *certificate of occupancy*.

CHAPTER 5 CE

EXISTING BUILDINGS

SECTION C501 GENERAL

**

**

C501.1 Scope. The provisions of this chapter shall control the *alteration*, *repair*, *addition* and *change of occupancy* of existing buildings and structures.

C501.2 Existing buildings. Except as specified in this chapter, this code shall not be used to require the removal, *alteration* or abandonment of, nor prevent the continued use and maintenance of, an existing building or building system lawfully in existence at the time of adoption of this code.

C501.3 Maintenance. Buildings and structures, and parts thereof, shall be maintained in a safe and sanitary condition. Devices and systems that are required by this code shall be maintained in conformance to the code edition under which installed. The owner or the owner's authorized agent shall be responsible for the maintenance of buildings and structures. The requirements of this chapter shall not provide the basis for removal or abrogation of energy conservation, fire protection and safety systems and devices in existing structures.

C501.4 Compliance. Alterations, repairs, additions and changes of occupancy to, or relocation of, existing buildings and structures shall comply with the provisions for alterations, repairs, additions and changes of occupancy or relocation, respectively, in the International Building Code, International File Code, International Fuel Gas Code, International Mechanical Code, International Plumbing Code, International Property Maintenance Code, International Private Sewage Disposal Code and NFPA 70.

C501.5 New and replacement materials. Except as otherwise required or permitted by this code, materials permitted by the applicable code for new construction shall be used. Like materials shall be permitted for *repairs*, provided hazards to life, health or property are not created. Hazardous materials shall not be used where the code for new construction would not permit use of these materials in buildings of similar occupancy, purpose and location.

C501.6 Historic buildings. No provisions of this code relating to the construction, *repair, alteration*, restoration and movement of structures, and *change of occupancy* shall be mandatory for *historic buildings* provided a report has been submitted to the *code afficialcode official or authority having jurisdiction* and signed by a *registered design professional*, or a representative of the State Historic Preservation Office or the historic preservation authority having jurisdiction, demonstrating that compliance with that provision would threaten, degrade or destroy the historic form, fabric or function of the building. If a report was signed by anyone other than a representative of the State Historic Preservation Officer, the signatory of the report shall provide a copy to the State Historic Preservation Office.

SECTION C502 ADDITIONS

C502.1 General. Additions to an existing building, building system or portion thereof shall conform to the provisions of this code as those provisions relate to new construction without requiring the unaltered portion of the existing building or building system to comply with this code. Additions shall not create an unsafe or hazardous condition or overload existing building systems. An addition shall be deemed to comply with this code if the addition alone comples or if the existing building and addition comply with this code as a single building. Additions shall comply with Section C502.2.

Additions complying with ANSI/ASHRAE/IESNA 90.1-2013. need not comply with Sections C402, C403, C404 and C405.

C502.2 Prescriptive compliance. *Additions* shall comply with Sections **C502.2.1** through C502.2.6.2.

C502.2.1 Vertical fenestration. New vertical fenestration area that results in a total building fenestration area less than or equal to that specified in Section C402.4.1 shall comply with Section C402.4. Additions with vertical fenestration that result in a total building fenestration area greater than Section C402.4.1 or additions that exceed the fenestration area greater than Section C402.4.1 for the addition only. Additions that result in a total building vertical glass area exceeding that specified in Section C402.4.1.1 shall comply with Section C402.4.1.1 specified in Section C402.4.1.1 shall comply with Section C402.4.1.1 specified in Section C402.4.1.1 shall comply with Section C407.

C502.2.2 Skylight area. New *skylight* area that results in a total building *fenestration* area less than or equal to that specified in Section C402.4.1 shall comply with Section C402.4. *Additions* with *skylight* area that result in a total building *skylight* area greater than C402.4.1 or additions that exceed the *skylight* area shall comply with Section C402.4.1.2 for the *addition* only. *Additions* that result in a total building *skylight* area exceeding that specified in Section C402.4.1.2 shall comply with Section C407.

C502.2.3 Building mechanical systems. New mechanical systems and equipment that are part of the *addition* and serve the building heating, cooling and ventilation needs shall comply with Section C403.

C502.2.4 Service water-heating systems. New service water-heating equipment, controls and service water heating piping shall comply with Section C404.

C502.2.5 Pools and inground permanently installed spas. New pools and inground permanently installed spas shall comply with Section C404.9. <mark>**</mark>

2015 INTERNATIONAL ENERGY CONSERVATION CODE®

C-95

EXISTING BUILDINGS

C502.2.6 Lighting power and systems. New lighting systems that are installed as part of the addition shall comply with Section C405.

C502.2.6.1 Interior lighting power. The total interior lighting power for the *addition* shall comply with Section C405.4.2 for the *addition* alone, or the existing building and the *addition* shall comply as a single building.

C502.2.6.2 Exterior lighting power. The total exterior lighting power for the *addition* shall comply with Section C405.5.1 for the *addition* alone, or the existing building and the *addition* shall comply as a single building.

SECTION C503 ALTERATIONS

C503.1 General. Alterations to any building or structure shall comply with the requirements of the code for new construction. Alterations shall be such that the existing building or structure is no less conforming to the provisions of this code than the existing building or structure was prior to the alteration. Alterations to an existing building, building system or portion thereof shall conform to the provisions of this code as those provisions relate to new construction without requiring the unaltered portions of the existing building or building system to comply with this code. Alterations shall not create an unsafe or hazardous condition or overload existing building systems.

Alterations complying with ANSI/ASHRAE/IESNA 90.1-2013₇ need not comply with Sections C402, C403, C404 and C405.

Exception: The following *alterations* need not comply with the requirements for new construction, provided the energy use of the building is not increased:

1. Storm windows installed over existing fenestration.

- Surface-applied window film installed on existing single-pane *fenestration* assemblies reducing solar heat gain, provided the code does not require the glazing or *fenestration* to be replaced.
- Existing ceiling, wall or floor cavities exposed during construction, provided that these cavities <u>already</u> are filled with insulation.
- Construction where the existing roof, wall or floor cavity is not exposed.

Roof recover.

- 6. Air barriers shall not be required for roof recover and roof replacement where the alterations or renovations to the building do not include alterations, renovations or repairs to the remainder of the building envelope.
- 7. *Alterations* that replace less than 50 percent of the luminaires in a space, provided that such *alterations* do not increase the installed interior lighting power.

C503.2 Change in space conditioning. Any nonconditioned or low-energy space that is altered to become conditioned

space shall be required to be brought into full compliance with this code.

C503.3 Building envelope. New building envelope assemblies that are part of the *alteration* shall comply with Sections C402.1 through C402.5.

C503.3.1 Roof replacement. *Roof replacements* shall comply with Table C402.1.3 or C402.1.4 where the existing roof assembly is part of the *building thermal envelope* and contains insulation entirely above the roof deck.

C503.3.2 Vertical fenestration. The addition of vertical fenestration that results in a total building fenestration area less than or equal to that specified in Section C402.4.1 shall comply with Section C402.4. The addition of vertical fenestration that results in a total building fenestration area greater than Section C402.4.1 shall comply with Section C402.4.1.1 for the space adjacent to the new fenestration only. Alterations that result in a total building vertical glass area exceeding that specified in Section C402.4.1.1 shall comply with Section C407.

C503.3.3 Skylight area. The addition of *skylight* area that results in a total building *skylight* area less than or equal to that specified in Section C402.4.1 shall comply with Section C402.4. The addition of *skylight* area that results in a total building skylight area greater than Section C402.4.1 shall comply with Section C402.4.1.2 for the space adjacent to the new skylights. *Alterations* that result in a total building skylight area exceeding that specified in Section C402.4.1.2 shall comply with Section C407.

C503.4 Heating and cooling systems. New heating, cooling and duct systems that are part of the *alteration* shall comply with Sections C403.

503.4.1 Economizers. New cooling systems that are part of *alteration* shall comply with Section C403.3.

C503.5 Service hot water systems. New service hot water systems that are part of the *alteration* shall comply with Section C404.

C503.6 Lighting systems. New lighting systems that are part of the *alteration* shall comply with Section C405.

Exception. Alterations that replace less than 10 percent of the luminaires in a space, provided that such alterations do not increase the installed interior lighting power.

SECTION C504 REPAIRS

C504.1 General. Buildings and structures, and parts thereof, shall be repaired in compliance with Section C501.3 and this section. Work on nondamaged components that is necessary for the required *repair* of damaged components shall be considered part of the *repair* and shall not be subject to the requirements for *alterations* in this chapter. Routine maintenance required by Section C501.3, ordinary *repairs* exempt from *permit* and abatement of wear due to normal service conditions shall not be subject to the requirements for *repairs* in this section.

**

EXISTING BUILDINGS

Where a building was constructed to comply with ANSI/ ASHRAE/IESNA 90.1<u>-2013</u>, repairs shall comply with the stan- dard and need not comply with Sections C402, C403, C404 and C405.

C504.2 Application. For the purposes of this code, the following shall be considered repairs:

- 1. Glass-only replacements in an existing sash and frame.
- 2. Roof repairs.
- Air barriers shall not be required for *roof repair* where the repairs to the building do not include *alterations*, renovations or *repairs* to the remainder of the building envelope.
- 4. Replacement of existing doors that separate conditioned space from the exterior shall not require the installation of a vestibule or revolving door, provided that an existing vestibule that separates a conditioned space from the exterior shall not be removed.
- 5. *Repairs* where only the bulb, the ballast or both within the existing luminaires in a space are replaced, provided that the replacement does not increase the installed interior lighting power.

SECTION C505 CHANGE OF OCCUPANCY OR USE

C505.1 General. Spaces undergoing a change in occupancy that would result in an increase in demand for either fossil fuel or electrical energy shall comply with this code. Where the use in a space changes from one use in Table C405.4.2(1) or C405.4.2(2) to another use in Table C405.4.2(1) or C405.4.2(2), the installed lighting wattage shall comply with Section C405.4.

CHAPTER 6

REFERENCED STANDARDS

This chapter lists the standards that are referenced in various sections of this document. The standards are listed herein by the promulgating agency of the standard, the standard identification, the effective date and title, and the section or sections of this document that reference the standard. The application of the referenced standards shall be as specified in Section 106.

AAMA	American Architectural Manufacturers Association 1827 Walden Office Square Suite 550 Schaumburg, IL 60173-4268	
Standard		Referenced
number	Title	in code section number
AAMA/WDMA/CSA 101/I.S.2/A C440—11	North American Fenestration Standard/ Specifications for Windows, Doors and Unit Skylights	
AHAM	Association of Home Appliance Manufacturers 1111 19th Street, NW, Suite 402 Washington, DC 20036	
Standard		Referenced
reference number	Title	in code section number
ANSI/ AHAM RAC-1—2008 AHAM HRF-1—2007	Room Air Conditioners Energy, Performance and Capacity of Household Refrigerators, Refrigerator- Freezers and Freezers	
AHRI	Air-Conditioning, Heating, and Refrigeration Institute 2111 Wilson Blvd, Suite 500 Arlington, VA 22201	
Standard		
reference number	Title	Referenced in code section number
number ISO/AHRI/ASHRAE	Brine-to-Air Heat Pumps—Testing and Rating	in code section number
number ISO/AHRI/ASHRAE 2011) Water-to-Air and H ISO/AHRI/ASHRAE	Brine-to-Air Heat Pumps—Testing and Rating for Performance	in code section number
number ISO/AHRI/ASHRAE 2011) Water-to-Air and I ISO/AHRI/ASHRAE 2011) Water-to-Water an	Brine-to-Air Heat Pumps—Testing and Rating	in code section number
number ISO/AHRI/ASHRAE 2011) Water-to-Air and H ISO/AHRI/ASHRAE	Brine-to-Air Heat Pumps—Testing and Rating for Performance	in code section number
number ISO/AHRI/ASHRAE 2011) Water-to-Air and I ISO/AHRI/ASHRAE 2011) Water-to-Water an 210/240—08 with	Brine-to-Air Heat Pumps—Testing and Rating for Performance	in code section number
number ISO/AHRI/ASHRAE 2011) Water-to-Air and H ISO/AHRI/ASHRAE 2011) Water-to-Water an 210/240—08 with Addenda 1 and 2 310/380—04	Brine-to-Air Heat Pumps—Testing and Rating for Performance	in code section number
number ISO/AHRI/ASHRAE 2011) Water-to-Air and I ISO/AHRI/ASHRAE 2011) Water-to-Water an 210/240—08 with Addenda 1 and 2 310/380—04 (CSA-C744-04) 340/360—2007	Brine-to-Air Heat Pumps—Testing and Rating for Performance nd Brine-to-Water Heat Pumps —Testing and Rating for Performance Performance Rating of Unitary Air-Conditioning and Air-Source Heat Pump Equipment Yandard for Packaged Terminal Air Conditioners and Heat Pumps	in code section number
number ISO/AHRI/ASHRAE 2011) Water-to-Air and H ISO/AHRI/ASHRAE 2011) Water-to-Water an 210/240—08 with Addenda 1 and 2 310/380—04 (CSA-C744-04) 340/360—2007 with Addendum 2	Brine-to-Air Heat Pumps—Testing and Rating for Performance	in code section number
number ISO/AHRI/ASHRAE 2011) Water-to-Air and I ISO/AHRI/ASHRAE 2011) Water-to-Water an 210/240—08 with Addenda 1 and 2 310/380—04 (CSA-C744-04) 340/360—2007 with Addendum 2 365(I-P)—09	Brine-to-Air Heat Pumps—Testing and Rating for Performance	in code section number

2015 INTERNATIONAL ENERGY CONSERVATION CODE®

Comment [NAV27]: This Chapter will be updated once draft is final, and in conjunction/consistent with RBES.

AHRI-continued

550/590—2011 With Addendum 1		
	Performance Rating of Water-Chilling and Heat Pump Water-Heating Packages Using the Vapor Compression Cycle	
560—00 1160 (I-P) —09 1200-2010	Absorption Water Chilling and Water Heating Packages	3.2.3(7) C404.2
AMCA	Air Movement and Control Association International 30 West University Drive Arlington Heights, IL 60004-1806	
Standard reference number		erenced in code number
08 (R2012) Laboratory	hergy Efficiency Classification for Fans	
ANSI	American National Standards Institute 25 West 43rd Street Fourth Floor New York, NY 10036	
Standard reference number		erenced in code number
Z21.10.3/CSA 4.3—11	Gas Water Heaters, Volume III—Storage Water Heaters with Input Ratings	
Z21.47/CSA 2.3—12 Z83.8/CSA 2.6—09	Above 75,000 Btu per Hour, Circulating Tank and Instantaneous. Table C Gas-fired Central Furnaces Table C403 Gas Util Heaters, Gas Packaged Heaters, Gas Utility Heaters Table C403 Gas-fired Duct Furnaces Table C403	3.2.3(4)
APSP	The Association of Pool & Spa Professionals 2111 Eisenhower Avenue Alexandria, VA 22314	
	Paf	erenced
reference		in code
reference number		in code number
reference number 14—11	Title section is American National Standard for Portable Electric Spa Efficiency. G	in code number
reference number 14—11 ASHRAE Standard reference	Title section is American National Standard for Portable Electric Spa Efficiency. C C American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. C 1791 Tullie Circle, NE Atlanta, GA 30329-2305 Refri	in code number C404.8
reference number 14—11 ASHRAE Standard reference number ASHRAE 127-2007 ANSI/ASHRAE/ACCA	Title section in American National Standard for Portable Electric Spa Efficiency. C American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. C 1791 Tullie Circle, NE Atlanta, GA 30329-2305	in code number C404.8 Ferenced in code number
reference number 14—11 ASHRAE Standard reference number ASHRAE 127-2007 ANSI/ASHRAE/ACCA Standard 183—2007 (RA2011) ASHRAE—2012	Title section in American National Standard for Portable Electric Spa Efficiency. C Mathematical Standard for Portable Electric Spa Efficiency. C Mathanta, GA 30329-2305 C	in code number C404.8 Cerenced in code number 3.2.3(9) 403.2.1
Standard reference number 14—11 ASHRAE 127-2007 ASHRAE 127-2007 ASHRAE 127-2007 ASHRAE 127-2007 (RA2011) ASHRAE—2012 ISO/AHRI/ASHRAE 13256-1 (2011)	Title section is American National Standard for Portable Electric Spa Efficiency	in code number C404.8 Gerenced in code number 3.2.3(9) 403.2.1 403.2.1

	ASHRAE—continued
ISO/AHRI/ASHRAE 13256-2 (2011)	Water-to-Water and Brine-to-Water Heat Pumps—Testing and Rating for Performance
90.1—2013	Energy Standard for Buildings Except Low-rise Residential Buildings
140—2011	Standard Method of Test for the Evaluation of Building Energy Analysis Computer Programs
146—2011	Testing and Rating Pool Heaters
ASME	American Society Mechanical Engineers Two Park Avenue New York, NY 10016-5990
Standard reference number	Title Referenced in code section number
ASME A17.1/ CSA B44—2013	Safety Code for Elevators and Escalators

ASTM

ASTM International 100 Barr Harbor Drive West Conshohocken, PA 19428-2859

	West Constionocken, PA 19428-2859
Standard reference number	Title Referenced in code section number
C 90—13	Specification for Load-bearing Concrete Masonry Units
C 1363—11	Standard Test Method for Thermal Performance of Building Materials and Envelope Assemblies by Means of a Hot Box Apparatus
C 1371-04a(2010)e1	Standard Test Method for Determination of Emittance of Materials Near Room Temperature Using Portable Emissometers
C 1549—09	Standard Test Method for Determination of Solar Reflectance Near
D 1003—11e1	Ambient Temperature Using A Portable Solar Reflectometer
E 283—04	Transparent Plastics
	Windows, Curtain Walls and Doors Under Specified Pressure Differences Across the Specimen
E 408-71(2008)	Table C402.5.2, C402.5.7 Test Methods for Total Normal Emittance of Surfaces Using
E 406—/1(2008)	Inspection-meter Techniques
E 779—10	Standard Test Method for Determining Air Leakage Rate by Fan Pressurization
E 903—96	Standard Test Method Solar Absorptance, Reflectance and Transmittance of Materials Using Integrating Spheres (Withdrawn 2005)
E 1677—11	Standard Specification for an Air-retarder (AR) Material or System for
E 1918—06	Low-rise Framed Building Walls
E 1980—11	Horizontal or Low-sloped Surfaces in the Field
	Horizontal and Low-sloped Opaque Surfaces
E 2178—13	Standard Test Method for Air Permanence of Building Materials
E 2357—11	Standard Test Method for Determining Air Leakage of Air Barriers Assemblies

CRRC	Cool Roof Rating Council 449 15th Street, Suite 200 Oakland, CA 94612
Standard	Referenced
reference number	Title in code section number
ANSI/CRRC-1—2012	CRRC-1 Standard
CSA	CSA Group 8501 East Pleasant Valley Cleveland, OH 44131-5516
Standard	Referenced
reference number	Title in code section number
AAMA/WDMA/CSA 01/I.S.2/A440—11	North American Fenestration Standard/Specification for Windows, Doors and Unit Skylights
CSA B55.1—2012 T CSA B55.2—2012	Yest Method for Measuring Efficiency and Pressure Loss of Drain Water Heat Recovery Units C404.8 Drain Water Heat Recover Units C404.8
CTI	Cooling Technology Institute P. O. Box 73383 Houston, TX 77273-3383
Standard	Referenced
reference number	Title in code section number
	Acceptance Test Code for Water Cooling Tower Table C403.2.3(8) cceptance Test Code for Closed Circuit Cooling Towers Table C403.2.3(8) Acceptance Test For Mechanical Draft Evaporative Vapor Condensers Table C403.2.3(8) Standard for Certification of Water Cooling Towers Thermal Performances Table C403.2.3(8)
DASMA	Door and Access Systems Manufacturers Association 1300 Sumner Avenue Cleveland, OH 44115-2851
Standard	Referenced
reference number	Title in code section number
105—92 (R2004)—13	Test Method for Thermal Transmittance and Air Infiltration of Garage Doors
DOE	U.S. Department of Energy c/o Superintendent of Documents 1000 Independence Avenue SW Washington, DC 20585
Standard	Referenced
number	Title in code section number
10 CFR, Part 430—1998	Energy Conservation Program for Consumer Products: Test Procedures and Certification and Enforcement Requirement for Plumbing Products; and Certification and Enforcement Requirements for Residential Appliances; Final Rule
10 CFR, Part 430, Subpart B, Appendix N—1998	Table C403.2.3(5), Table C404.2 Uniform Test Method for Measuring the Energy Consumption of Furnaces and Boilers C202
C-102	2015 INTERNATIONAL ENERGY CONSERVATION CODE®

	DOE—continued
10 CFR, Part 431-2004	Energy Efficiency Program for Certain Commercial and Industrial Equipment: Test Procedures and Efficiency Standards; Final Rules
10 CFR 431 Subpart B	C405.7, C405.8, Table C405.8
Арр В	Uniform Test Method for Measuring Nominal Full Load Efficiency of Electric Motors
NAECA 87—(88)	National Appliance Energy Conservation Act 1987 [(Public Law 100-12 (with Amendments of 1988-P.L. 100-357)]
ICC	International Code Council, Inc. 500 New Jersey Avenue, NW 6th Floor Washington, DC 20001
Standard reference number	Title Referenced in code section number
IBC—15 IFC—15 IFGC—15 IMC—15	International Building Code [®] C201.3, C303.2, C402.5.3, C501.4 International Fire Code [®] C201.3, C501.4 International Fuel Gas Code [®] C201.3, C501.4 International Fuel Gas Code [®] C201.3, C501.4 International Mechanical Code [®] C403.2.4.3, C403.2.6, C403.2.6.1, C403.2.6.2, C403.2.7, C403.2.8, C403.2.8, 1, C403.2.8, C403.2.9, C403.2.4, C403.4.4, C406.6, C501.4
IPC—15 IMPC—15 IPSDC—15	International Plumbing Code [®]
IEEE	The Institute of Electrical and Electronic Engineers Inc. 3 Park Avenue New York, NY 10016
Standard reference number	Title Referenced in code section number
IEEE 515.1—2012	IEE Standard for the Testing, Design, Installation, and Maintenance of Electrical Resistance Trace Heating for Commercial Applications
IES	Illuminating Engineering Society 120 Wall Street, 17th Floor New York, NY 10005-4001
Standard reference number	Title Referenced in code section number
ANSI/ASHRAE/IESNA 90.1—2013	Energy Standard for Buildings, Except Low-rise Residential Buildings

I

ISO	International Organization for Standardization 1, rue de Varembe, Case postale 56, CH-1211 Geneva, Switzerland	
Standard		Referenced
reference number	Title	in code section number
ISO/AHRI/ASHRAE 13256-1 (2011)	Water-to-Air and Brine-to-air Heat Pumps -Testing and Rating for Performance.	Tabla C402 2 2(2)
ISO/AHRI/ASHRAE 13256-2(2011)	Water-to-Water and Brine-to-Water Heat Pumps -Testing and Rating for Performance.	
NEMA	National Electrical Manufacturers Association 1300 North 17th Street, Suite 1752 Rosslyn, VA 22209	
Standard reference number	Title	Referenced in code section number
MG1—1993	Motors and Generators	
NFPA Standard reference number	National Fire Protection Association I Batterymarch Park Quincy, MA 02169-7471 Title	Referenced in code section number
70—14	National Electrical Code	
NFRC	National Fenestration Rating Council, Inc. 6305 Ivy Lane, Suite 140 Greenbelt, MD 20770	
Standard reference number	Title	Referenced in code section number
100—2009 200—2009	Procedure for Determining Fenestration Products U-factors—Second E Procedure for Determining Fenestration Product Solar Heat Gain Coef and Visible Transmittance at Normal Incidence—Second Edition	ficients
400—2009	Procedure for Determining Fenestration Product Air Leakage—Second	
SMACN	A Sheet Metal and Air Conditioning Contractors National Association, Inc. 4021 Lafayette Center Drive Chantilly, VA 20151-1209	
Standard reference		Referenced in code
number	Title	section number
	HVAC Air Duct Leakage Test Manual 2 nd Edition	

UL	UL LLC 333 Pfingsten Road Northbrook, IL 60062-2096
Standard reference number	Referenced in code Title section number
710—12 727—06 731—95 1784—01	Exhaust Hoods for Commercial Cooking Equipment .C403.2.8 Oil-fired Central Furnaces—with Revisions through April 2010 Table C403.2.3(4) Oil-fired Unit Heaters—with Revisions through August 2012 Table C403.2.3(4) Air Leakage Tests of Door Assemblies— with Revisions through July 2009 C402.5.3
US-FTC	United States-Federal Trade Commission 600 Pennsylvania Avenue NW Washington, DC 20580
Standard reference number	Title Referenced section number
CFR Title 16 (May 31, 2005)	<i>R</i> -value Rule
WDMA Standard	Window and Door Manufacturers Association 2025 M Street, NW, Suite 800 Washington, DC 20036-3309 Referenced
reference number	Title in code section number
AAMA/WDMA/CSA 101/I.S.2/A440—11	North American Fenestration Standard/Specification for Windows, Doors and Unit Skylights

INDEX

ACCESSIBLE	
Controls C402.	2.4, C404.6, C404.9.1,
	C405.2.2.3, C405.2.3.1
Defined	
ADDITIONAL EFFICIENCY PA	CKAGE C406
ADDITIONS	
Defined	C202
Historic buildings	C501.6
Requirements	C502
ADMINISTRATION	
AIR BARRIER	C402.5
Access openings	C402.5.4
Assemblies	C402.5.1.2.2
Compliance options	C402.5.1.2
Construction	
Dampers	. C402.5.5, C403.2.4.3
Doors other than fenestration.	
Fenestration C40	02.5.2, Table C402.5.2
Materials	C402.5.1.2.1
Penetrations	
Recessed lighting	C402.5.8
Rooms with fuel burning applia	nces
Testing	C402.5
Vestibules	C402.5.7
AIR CONDITIONERS	
Efficiency requirements	.Tables C403.2.3(1, 3)
AIR CURTAIN	
Defined	C202
Vestibules	C402.5.7
AIR ECONOMIZERS	
Defined	C202
Requirements C403.	
	C403.3.3, C403.3.4
AIR INFILTRATION (see AIR BA	
Defined	C202
AIR INTAKES AND EXHAUSTS	,
···· · · · · · · · · · · · · · · · · ·	C403.2.4.3
AIR LEAKAGE—THERMAL EN	VELOPE
(see AIR BARRIER) AIR SYSTEM BALANCING	C408.2.2.1
AIR STSTEM BALANCING	C408.2.2.2, C408.2.5.3
ALTERATIONS	0400.2.2.2, 0400.2.3.3
Defined	C202
Historic buildings	
Replacement fenestration	
Requirements	

Α

ALTERNATE MATERIALS
Defined C202
APPROVED AGENCY
Defined C202
Inspections C104.4
AREA-WEIGHTED <i>U</i> -FACTORC402.4.3.4
AUTOMATIC
Defined C202
В
BASEMENT WALLS (see WALL, BELOW GRADE)
Requirements C303.2.1
BELOW-GRADE WALLS
(see WALL, BELOW GRADE)
BOARD OF APPEALS C109
Limitations on authority
Qualifications of members
BOILERS
Defined
Requirements Table C403.2.3(5), C403.4.2,
C403.4.2.5, C404.2, Table C404.2
Setback controls C403.2.5
Turndown controls C403.4.2.5
BUILDING
Defined
Multifamily residential C407.5.2.3
BUILDING COMMISSIONING
Defined
Requirements C408
BUILDING ENTRANCE
Defined
Exterior lighting Table C405.5.2(2)
Lighting controls C405.2.1.1
Vestibules
BUILDING ENVELOPE
Compliance documentationC103.2, C103.2.1
Defined
Exemptions
Insulation
Insulation and
fenestration criteria C402.1.3, Table C402.1 .3 , C402.1.4 , Table C402.1.4
Requirements C402
Performance method
BUILDING THERMAL ENVELOPE
Air leakage and barriers

INDEX

Defined	C202
Doors	C402.4.4
Low-energy buildings	C402.1.1
Performance	.C402.1, C402.1.3,
	C402.1.4, C402.1.5
Rooms with fuel-burning appliance	es C402.5.3
Specific insulation	C402.2

С

C-FACTOR
Defined C202
Assembly U-, C- or F-factor methodC402.1.4,
Table C402.1-4
CAULKING AND
WEATHERSTRIPPING C402.5.1.1, C402.5.1.2.1,
C402.5.1.2.2, C402.5.3
C402.5.4, C402.5.6, C402.5.8
CHANGE OF OCCUPANCY C501.4, C505
CHILLERS Table C403.2.3(7), Table C407.5.1(4)
Positive displacement
chilling packages
Water-cooled centrifugal
chiller packages
Table C403.2.3(7), Table C407.5.1(5
CIRCULATING HOT WATER SYSTEM
Defined
Requirements
CIRCULATING PUMPS
CIRCULATING SYSTEMS
C404.6
CLIMATE TYPES
Defined
CLIMATE ZONES
Defined
Established C301, Figure C301.1,
Table C301.1
By state or territory Figure C301.1, Table C301.1
International climate zones C301.3,
Table C301.3(1), Table C301.3(2)
Warm humid C301.2, Table C301.2, C301.3.1
Tropical
CODE OFFICIALCODE OFFICIAL OR
AUTHORITY HAVING JURISDICTION
Approval of alternate methods
Defined
Examination of construction documentsC103.3
Inspections
COEFFICIENT OF PERFORMANCE (COP)
Defined
Requirements Table C403.2.3(2),
Table C403.2.3(7)

COMMERCIAL BUILDINGS

Compliance
C101.5, C401.1, C401.2, Chapter 5
Defined
Total building performance
COMMISSIONING
COMPLIANCE AND ENFORCEMENT
General
Existing buildings C501.4
COMPRESSOR (REFRIGERATION)
SYSTEMS
APPROACH
COMPUTER ROOM
Air conditioning
Defined
CONDENSING UNITS
DefinedC202
Efficiency requirements Tables C403.2.3(1, 6)
CONDITIONED FLOOR AREA
DefinedC202
Renewable energy
CONDITIONED SPACE
Defined
Change from nonconditioned or
low energy
Roof solar reflectance
Rooms containing fuel-burning
appliances
CONSTRUCTION DOCUMENTS
Amended C103.4
Amended C103.4 Approval C103.3.1 Examination C103.3
Amended C103.4 Approval C103.3.1 Examination C103.3 Information required C103.2
Amended C103.4 Approval C103.3.1 Examination C103.3
Amended C103.4 Approval C103.3.1 Examination C103.3 Information required C103.2 Phased approvals C103.3.3
AmendedC103.4ApprovalC103.3.1ExaminationC103.3Information requiredC103.2Phased approvalsC103.3.3Previous approvalsC103.3.2RetentionC103.5
AmendedC103.4ApprovalC103.3.1ExaminationC103.3Information requiredC103.2Phased approvalsC103.3.3Previous approvalsC103.3.2
AmendedC103.4ApprovalC103.3.1ExaminationC103.3Information requiredC103.2Phased approvalsC103.3.3Previous approvalsC103.3.2RetentionC103.5RevocationC104.7.1
Amended C103.4 Approval C103.3.1 Examination C103.3 Information required C103.2 Phased approvals C103.3.3 Previous approvals C103.3.2 Retention C103.5 Revocation C104.7.1 CONTINUOUS AIR BARRIER C202
AmendedC103.4ApprovalC103.3.1ExaminationC103.3Information requiredC103.2Phased approvalsC103.3.3Previous approvalsC103.3.2RetentionC103.5RevocationC104.7.1CONTINUOUS AIR BARRIER
Amended C103.4 Approval C103.3.1 Examination C103.3 Information required C103.3 Phased approvals C103.3.3 Previous approvals C103.3.2 Retention C103.5 Revocation C104.7.1 CONTINUOUS AIR BARRIER C202 Required C402.5.1 CONTINUOUS INSULATION
Amended C103.4 Approval. C103.3.1 Examination C103.3 Information required. C103.3 Phased approvals C103.3.3 Previous approvals C103.3.2 Retention C103.5 Revocation C104.7.1 CONTINUOUS AIR BARRIER C202 Required. C402.5.1 CONTINUOUS INSULATION C202
Amended C103.4 Approval C103.3.1 Examination C103.3 Information required C103.3 Phased approvals C103.3.3 Previous approvals C103.3.2 Retention C103.5 Revocation C104.7.1 CONTINUOUS AIR BARRIER C202 Required C402.5.1 CONTINUOUS INSULATION
Amended C103.4 Approval. C103.3.1 Examination C103.3 Information required C103.3 Phased approvals C103.3.3 Previous approvals C103.3.2 Retention C103.5 Revocation C104.7.1 CONTINUOUS AIR BARRIER C202 Required C402.5.1 CONTINUOUS INSULATION C202 Requirements C402.1.3, Table C402.1.3,
Amended C103.4 Approval. C103.3.1 Examination C103.3 Information required C103.3 Phased approvals C103.3.3 Previous approvals C103.3.2 Retention C103.5 Revocation C104.7.1 CONTINUOUS AIR BARRIER C202 Required C402.5.1 CONTINUOUS INSULATION C202 Requirements C402.1.3, Table C402.1.3, C402.2.4, C402.2.4
Amended C103.4 Approval. C103.3.1 Examination C103.3 Information required. C103.3 Information required. C103.3 Phased approvals C103.3.3 Previous approvals C103.3.2 Retention C103.5 Revocation C104.7.1 CONTINUOUS AIR BARRIER C202 Defined. C202 Required. C402.5.1 CONTINUOUS INSULATION C202 Requirements. C402.1.3, Table C402.1.3, C402.2.4 CONTROLS C
Amended C103.4 Approval. C103.3.1 Examination C103.3 Information required. C103.3 Information required. C103.3 Phased approvals C103.3.3 Previous approvals C103.3.2 Retention C103.5 Revocation C104.7.1 CONTINUOUS AIR BARRIER C402.5.1 Defined. C202 Required. C402.5.1 CONTINUOUS INSULATION Defined. Defined. C202 Requirements. C402.1.3, Table C402.1.3, C402.2.4 CONTROLS Capabilities. Capabilities. C403.2.2, C403.2.4.1, C403.2.4.1.2, C403.2.4.2.2, C403.2.6.1, C403.4.2.3.1, C403.4.2.6, C403.4.3, C404.6, 404.7
Amended C103.4 Approval. C103.3.1 Examination C103.3 Information required. C103.3 Information required. C103.3 Phased approvals C103.3.3 Previous approvals C103.3.2 Retention C103.5 Revocation C104.7.1 CONTINUOUS AIR BARRIER C402.5.1 Defined. C202 Required. C402.5.1 CONTINUOUS INSULATION C402.2.3, C402.2.4 Defined. C202 Requirements. C402.1.3, Table C402.1.3, C402.2.4 CONTROLS Capabilities. C403.2.2, C403.2.4.1, C403.2.4.1.2, C403.2.4.1.2, C403.2.4.2.2, C403.2.4.1.2, C403.2.4.2.3, C403.4.2.6, C403.4.3, C404.6, 404.7 Chilled water plants C403.4.2.6
Amended C103.4 Approval C103.3.1 Examination C103.3 Information required C103.3 Information required C103.3 Phased approvals C103.3.3 Previous approvals C103.3.2 Retention C103.5 Revocation C104.7.1 CONTINUOUS AIR BARRIER C402.5.1 Defined C202 Required C402.5.1 CONTINUOUS INSULATION C402.2.3, C402.2.4 Defined C202 Requirements C402.2.1, C403.2.4.1.2, C403.2.4.1.2, C403.2.4.1.2, C403.2.4.1.2, C403.2.4.2.2, C403.2.4.1.2, C403.2.4.2.2, C403.2.4.1.2, C403.4.2.6, C403.4.3, C404.6, 404.7 Chilled water plants C403.3, C403.3.1, C403.3.3.2,
Amended C103.4 Approval. C103.3.1 Examination C103.3 Information required. C103.3 Information required. C103.3 Phased approvals C103.3.3 Previous approvals C103.3.2 Retention C103.5 Revocation C104.7.1 CONTINUOUS AIR BARRIER C402.5.1 Defined. C202 Required. C402.5.1 CONTINUOUS INSULATION C402.2.3, C402.2.4 Defined. C202 Requirements. C402.1.3, Table C402.1.3, C402.2.4 CONTROLS Capabilities. C403.2.2, C403.2.4.1, C403.2.4.1.2, C403.2.4.1.2, C403.2.4.2.2, C403.2.4.1.2, C403.2.4.2.3, C403.4.2.6, C403.4.3, C404.6, 404.7 Chilled water plants C403.4.2.6

Energy recovery systems	C403.2.7
Fan speed C403.4.1, C4	03.4.1.1, C403.4.3,
	3.2.12, C403.2.12.1
Freeze protection system	C403.2.4.6
Glazing	C402.4.3.3
Heat pump	2.4.1.1, C403.4.2.3
Heating and cooling	C403.2.2. C403.2.4.
с с	C403.3.1, C403.4
Hot water system	C404.6
Humidity	C403.2.7, C403.3.1
HVAC	03.2.12, C408.2.3.2
Hydronic systems	C403.4.2
Lighting C402.4, C402	2.4.1.1. C402.4.1.2.
C402.4.2.1, C402.4.3.1	
Lighting, digital	
Off hour	
Service water heating	
een nee nater needing	C404.5. C404.6
Shutoff dampers	
Snow melt system	
Temperature	3.2.4.1. C403.2.4.2.
	.4.2.1, C403.2.4.2.2,
	C403.2.4.3 C403.4.2
Three-pipe system	C403.4.2.1
Two-pipe changeover system	
Variable air volume systems	
Ventilation	
COOLING SYSTEMS	
Hot gas bypass limitation	C403.4.6
COOLING TOWER C40	3.4.3.3, C403.4.3.4
COOLING WITH OUTDOOR AIR	C403.3.1
CRAWL SPACE WALLS	
Defined	
Requirements	C303.2.1
Defined	C202
CURTAIN WALL Defined Air leakage of fenestration	Table C402.5.2
· ····································	
D	
DAMPERS	402.5.5, C403.2.4.3
DAYLIGHT RESPONSIVE CONTRO	DL
Defined	
Required C402.4.1.1, C402	
	02.4.3.2, C405.2.3.1
DAYLIGHT ZONE C40	
Defined	
Under skylights C402.4.1.2, C	402.4.2, C405.2.2.3
DAYLIGHT ZONE CONTROL	C405 2 3
DEADBAND	4.1.2, C403.2.4.1.3,

DEGREE DAY COOLING (CDD) Table C301.3(2) DEGREE DAY HEATING (HDD) Table C301.3(2) DEMAND CONTROL VENTILATION (DCV) DEMAND RECIRCULATION WATER SYSTEM Requirements C404.7 DIRECT EXPANSION (DX) C403.4.1.1 DOORS Default U-factors..... Table C303.1.3(2) Garage doors C303.1.3 Loading docks...... C402.5.6 Table C402.1.4, C402.4, C402.4.4, 402.5.4 DUAL DUCT VAV C403.4.4.2, C403.4.4.3 DUCTS C403.2.9.1.1, C403.2.9.1.2, C403.2.9.1.3 Sealing C103.2, C403.2.9, C403.2.9.1.1, C403.2.9.1.2. C403.2.9.1.3 DUCT SYSTEM Defined C202 **DWELLING UNIT** DYNAMIC GLAZING Е

ECONOMIZER	
Air	C403.3.3, Table C403.3(1)
ControlsC40	3.3.1, C403.4.1.2, C403.4.1.3
Defined	C202
Fault detection and diag	gnostics (FDD) C403.2.4.7
High-limit shutoff contro	ol C403.3.3.3,
	Table C403.3.3.3
Requirements	C403.3.3, C403.3.4
Water	C403.3.4
EFFICIENCY, ADDITION	IAL C406
ELECTRICAL METERS	

2015 INTERNATIONAL ENERGY CONSERVATION CODE®

DEFINITIONS Chapter 2

INDEX

INDEX

|

ELECTRICAL POWER AND LIG	HTING C405
ELECTRICAL TRANSFORMERS	S
ELEVATOR POWER	C405.9.1, C405.9.2
ELEVATOR SHAFTS	C402.5.4, C402.5.5
ENCLOSED SPACE	
Defined	
Under skylights	
ENERGY ANALYSIS, ANNUAL	
Defined	
Documentation.	
Requirements	
ENERGY COST	
Compliance performance	C401 2
Defined	
Performance basis.	
ENERGY EFFICIENCY RATIO	
(EER)C403.2.3, Tables	C403.2.3(1, 2, 3, 6, 7)
ENERGY RECOVERY VENTILA	
Defined	
Requirements	
ENERGY SIMULATION TOOL	
Defined	C202
Requirements/use	
	C407.2, C407.5
ENTRANCE DOOR	
Air leakage	
Defined	
Thermal performance	Table C402 4
ENVELOPE, BUILDING THERM	AL
- ,	0000
Defined	G202~
Defined	C402 1 3
ENVELOPE DESIGN METHODS	6
ENVELOPE DESIGN METHODS	6
ENVELOPE DESIGN METHODS	5 C402.1.3, C402.1.4, C402.1.5 C402.1.2
ENVELOPE DESIGN METHODS EQUIPMENT BUILDINGS EQUIPMENT EFFICIENCIES	5 C402.1.3, C402.1.4, C402.1.5 C402.1.2
ENVELOPE DESIGN METHODS EQUIPMENT BUILDINGS EQUIPMENT EFFICIENCIES C403. EQUIPMENT PERFORMANCE	5
ENVELOPE DESIGN METHODS EQUIPMENT BUILDINGS EQUIPMENT EFFICIENCIES C403. EQUIPMENT PERFORMANCE REQUIREMENTS	S.
ENVELOPE DESIGN METHODS EQUIPMENT BUILDINGS EQUIPMENT EFFICIENCIES C403. EQUIPMENT PERFORMANCE REQUIREMENTS Boilers	SC402.1.3, C402.1.4, C402.1.5 C402.1.2 C103.2, C403.2.3, .3.1, C403.4.1, C404.2 C403.2.3 Table C403.2.3(5)
ENVELOPE DESIGN METHODS EQUIPMENT BUILDINGS EQUIPMENT EFFICIENCIES C403. EQUIPMENT PERFORMANCE REQUIREMENTS Boilers Condensing units	 C402.1.3, C402.1.4, C402.1.5 C402.1.2 C103.2, C403.2.3, C403.4.1, C404.2 C403.2.3 Table C403.2.3(5) Table C403.2.3(6)
ENVELOPE DESIGN METHODS EQUIPMENT BUILDINGS EQUIPMENT EFFICIENCIES C403. EQUIPMENT PERFORMANCE REQUIREMENTS Boilers Condensing units Economizer exception	SC402.1.3, C402.1.4, C402.1.5 C402.1.2 C103.2, C403.2.3, .3.1, C403.4.1, C404.2 C403.2.3 Table C403.2.3(5) Table C403.2.3(6) Tables C403.3.1(1-6)
ENVELOPE DESIGN METHODS EQUIPMENT BUILDINGS EQUIPMENT EFFICIENCIES C403. EQUIPMENT PERFORMANCE REQUIREMENTS Boilers Condensing units	SC402.1.3, C402.1.4, C402.1.5 C402.1.2 C103.2, C403.2.3, .3.1, C403.4.1, C404.2 C403.2.3 Table C403.2.3(5) Table C403.2.3(6) Tables C403.3.1(1-6)
ENVELOPE DESIGN METHODS EQUIPMENT BUILDINGS	SC402.1.3, C402.1.4, C402.1.5 C402.1.2 C103.2, C403.2.3, .3.1, C403.4.1, C404.2 C403.2.3 Table C403.2.3(5) Table C403.2.3(6) Tables C403.3.1(1-6) Table C403.2.3(8) ers and
ENVELOPE DESIGN METHODS EQUIPMENT BUILDINGS EQUIPMENT EFFICIENCIES C403 EQUIPMENT PERFORMANCE REQUIREMENTS Boilers Condensing units Economizer exception Heat rejection equipment Packaged terminal air condition heat pump.	SC402.1.3, C402.1.4, C402.1.5 C402.1.2 C103.2, C403.2.3, .3.1, C403.4.1, C404.2 C403.2.3 Table C403.2.3(5) Table C403.2.3(6) Tables C403.3.1(1-6) Table C403.2.3(8) ers and
ENVELOPE DESIGN METHODS EQUIPMENT BUILDINGS EQUIPMENT EFFICIENCIES C403. EQUIPMENT PERFORMANCE REQUIREMENTS Boilers Condensing units Condensing units Economizer exception Heat rejection equipment. Packaged terminal air condition heat pump. Unitary air conditioners and	SC402.1.3, C402.1.4, C402.1.5 C402.1.2 C103.2, C403.2.3, .3.1, C403.4.1, C404.2 C403.2.3 Table C403.2.3(5) Table C403.2.3(6) Tables C403.3.1(1-6) Table C403.2.3(8) ers and Table C403.2.3(3)
ENVELOPE DESIGN METHODS EQUIPMENT BUILDINGS EQUIPMENT EFFICIENCIES C403 EQUIPMENT PERFORMANCE REQUIREMENTS Boilers Condensing units Heat rejection equipment Packaged terminal air condition heat pump Unitary air conditioners and condensing units.	SC402.1.3, C402.1.4, C402.1.5 C402.1.2 C103.2, C403.2.3, .3.1, C403.4.1, C404.2 C403.2.3 Table C403.2.3(5) Table C403.2.3(6) Tables C403.2.3(8) ers and Table C403.2.3(8) ers and Table C403.2.3(3) Table C403.2.3(1)
ENVELOPE DESIGN METHODS EQUIPMENT BUILDINGS EQUIPMENT EFFICIENCIES C403 EQUIPMENT PERFORMANCE REQUIREMENTS Boilers Condensing units Heat rejection equipment Heat rejection equipment Packaged terminal air condition heat pump Unitary air conditioners and condensing units Unitary and applied heat pumps	SC402.1.3, C402.1.4, C402.1.5 C402.1.2 C103.2, C403.2.3, .3.1, C403.4.1, C404.2 C403.2.3 Table C403.2.3(5) Table C403.2.3(6) Tables C403.2.3(8) ers and Table C403.2.3(8) ers and Table C403.2.3(3) Table C403.2.3(1)
ENVELOPE DESIGN METHODS EQUIPMENT BUILDINGS EQUIPMENT EFFICIENCIES C403 EQUIPMENT PERFORMANCE REQUIPMENT PERFORMANCE REQUIREMENTS Boilers Condensing units Condensing units Economizer exception Heat rejection equipment Packaged terminal air condition heat pump. Unitary air conditioners and condensing units. Unitary and applied heat pumps Warm air duct furnaces and	S
ENVELOPE DESIGN METHODS EQUIPMENT BUILDINGS EQUIPMENT EFFICIENCIES C403 EQUIPMENT PERFORMANCE REQUIPMENT PERFORMANCE REQUIREMENTS Boilers Condensing units Condensing units Heat rejection equipment Heat rejection equipment Heat rejection equipment Heat rejection equipment Unitary air conditioners and condensing units. Unitary and applied heat pumps Warm air duct furnaces and unit heaters.	 S
ENVELOPE DESIGN METHODS EQUIPMENT BUILDINGS EQUIPMENT EFFICIENCIES C403 EQUIPMENT PERFORMANCE REQUIREMENTS Boilers Condensing units Condensing units Economizer exception Heat rejection equipment Packaged terminal air condition heat pump Unitary air conditioners and condensing units Unitary and applied heat pumps Warm air duct furnaces and unit heaters Warm air furnaces	 S
ENVELOPE DESIGN METHODS EQUIPMENT BUILDINGS EQUIPMENT EFFICIENCIES C403 EQUIPMENT PERFORMANCE REQUIPMENT PERFORMANCE REQUIREMENTS Boilers Condensing units Condensing units Heat rejection equipment Heat rejection equipment Heat rejection equipment Heat rejection equipment Unitary air conditioners and condensing units. Unitary and applied heat pumps Warm air duct furnaces and unit heaters.	 S

Water chilling packages,	
	Table C403.2.3(7)
Water heating	Table C404.2, C404.2.1
EQUIPMENT ROOM	
Defined	C202
Lower power allowance .	Table C405.5.2(2)
ESCALATORS	C405.9.2
EXEMPT BUILDINGS	C401.1.1, C402.1.2
EXHAUSTS	
EXIT SIGNS	. C405.2, C405.3, C405.4.1
EXISTING BUILDINGS.	Chapter 5
EXTERIOR LIGHTING	C405.2.5, C405.5
EXTERNAL SHADING	
EXTERIOR WALLS	
Defined	C202
Thermal performance	C402, C402.2.3
	F
	Г
F-FACTOR	

F-FACTOR
Defined
Assembly U-, C- or F-factor
method
FAN BRAKE HORSEPOWER (BHP)
Allowable
Defined
FAN EFFICIENCY GRADE (FEG)
Defined
Requirements
FAN FLOOR HORSEPOWER
FAN POWER
LIMITATION
FAN SYSTEM BHP
Allowable
Defined
FAN SYSTEM DESIGN CONDITIONS
Allowable
Defined
FAN SYSTEM MOTOR NAMEPLATE HP
Defined
Requirements
FAULT DETECTION & DIAGNOSTICS (FDD)
Economizers
FEES
Refunds
Related fees C107.4
Schedule of permit fees
FENESTRATION
(see also Doors)
Air leakage (infiltration) rate
Table C402.5.2
Defined

Maximum area	
Rating and labeling	g C303.1.3, C402.1.3
	C402.4.1.2, C402.4.2,
	C402.4.2.1, C402.4.2.2, C402.4.3,
	C502.2.2, C503.3.3
Solar heat gain (SH	HGC) C402.4.3, Table C402.4
Vertical	C402.1, C402.4.1.1, C402.4.3,
	Table C402.4, C502.2.1, C503.3.2
FENESTRATION PR	ODUCT, FIELD-
FABRICATED	
Defined	C202
Air leakage	
FENESTRATION PR	ODUCT, SITE-BUILT
Defined	C202
FLOOR AREA, NET	
Defined	C202
Fenestration increa	aseC402.4.1.1
FLOORS	
Slab on grade	C402.2.5
-	C402.2.4
	ON SYSTEMS C403.2.4.6
FURNACE EFFICIEN	NCY Table C403.2.3(4)

G	
GENERAL LIGHTING	
Additional lighting	
Daylight controls	Н
Defined	
Interior lighting power	
GENERAL PURPOSE ELECTRIC MOTORS	Ľ H
Defined	
GREENHOUSE	
Defined	
Building envelope	
GUESTROOMS (see SLEEPING UNIT)	
GLAZING AREA	
Default fenestration U-factors Table C303.1.3(1)	
Dynamic	I
Н	
HAZE FACTOR	

HAZE FACTOR	
HEAT PUMP	Tables C403.2.3(2, 3),
	C403.2.4.1.1, C403.4.2.3
HEAT RECOVERY	
Drain water	
Economizer exemption	C403.3
Kitchen exhaust	C403.2.8
Service water	C403.4.5

HEAT REJECTION EQUIPME	NT
HEAT TRACE SYSTEMS	C404 6 2
HEAT TRANSFER	
EQUIPMENT	Table C403.2.3(9)
HEAT TRAPS	
Defined	C202
Required	
	,
Defined	C202
Insulation.	
	Fable C402.1.4, C402.2.6
HEATING AND COOLING	10010-0402.1.4, 0402.2.0
HEATING AND COOLING LOADS	2 1 C403 2 1 C403 2 2
C403 2	3, C403.2.4.1.1, C403.3
HEATING OUTSIDE A BUILD	
HIGH-SPEED DOOR	
Air leakage	Table C402 5 2
Defined	
HISTORIC BUILDINGS	
Defined	C202
Compliance.	
HOT GAS BYPASS	
HOT WATER	
Efficient delivery	
Piping insulation	
System controls	C403.4.5, C404.6
HUMIDISTAT	
Defined	
Requirements	C403.2.4.1, C403.2.7
HVAC EQUIPMENT	
Automatic setback and shutd	
Automatic start capabilities .	
Increased efficiency	
Performance requirements	
Supply-air temperature reset	C403.4.4.5
System map zones	Table C407.5.1(2),
	C407.5.2.1
HVAC SYSTEMS	C403.2.11, C408.2
Manuals	
Plan	C408.2.1
Report	. C408.2.4, C408.2.4.1,
	C408.2.4.2, C408.2.5.4
HYDRONIC HEAT PUMP SYS	STEMS C403.4.2.3
1	

ICE MELT SYSTEMS	C403.2.4.5
IDENTIFICATION (MATERIALS,	
EQUIPMENT AND SYSTEM)	C303.1

INDEX

I

INDIRECTLY CONDITIONED (see CONDITIONED SPACE	
INFILTRATION (air leakage) (see AIR BARRIER)	
Defined	
Inspection agencies	
INSULATED SIDING	
INSULATION	
Continuous insulation C	402.1.3, Table C402.1 .3 ,
	C402.2.1, C402.2.2
Duct	
Identification.	C303.1, C303.1.2
Installation	C303.1.1, C303.1.1.1,
	C303.1.2, C303.2
Mechanical system piping .	C403.2.10
Piping	C404.4
Plenum	C403.2.9
Product rating	C303.1.4
Protection of exposed found	ation C303.2.1
Protection of piping insulatio	n
Radiant heating systems	C402.2.6
Requirements C	402.1.3, Table C402.1.3,
	C402.2 through C402.2.6

INTEGRATED PART LOAD VALUE

(IFLV)	
Defined	
Requirements	Tables C403.2.3(6, 7),
	C403.2.3.1, Table 403.3(2)

	0.00.	,		~ (-,
INTERIOR LIGHTING POWE	ER	C405.4	, C405.	4.2

Κ

L

KITCHEN EXHAUST C403.2.8, Table C403.2.8

LABELED

Dampers	C403.2.4.3
Defined	
Fans	
Glazing, skylights	C402.2.2,
HVAC equipment	Table C403.2.3(3)
Lighting	C402.5.8, C405.4.1
Requirements	
	Table C403.2.3(3)
LIGHTING POWER	
Additional lighting	C405.4.2.2.1, C405.5.1
	- · · · ·

J	,
Design procedures	C405.4.2,
	C405.4.2.1, C405.4.2.2
Exterior connected	C405.5, C405.5.1,

Tables C405.5.1(1, 2) Interior connected C405.4, C405.4.1, C405.4.2, Tables C405.4.2(1, 2), C406.3 Reduced lighting power density C406.3 LIGHTING SYSTEMS C405.4.2(1, 2), C406.3 Controls, exterior C405.5.1(1, 2), C406.5.4.2(1, 2), Tables C405.5.1(1, 2), C405.2.5, Tables C405.5.1(1, 2), C405.5.1 Controls, interior C405.2.2, Tables C405.4.2(1, 2), C405.4, C405.4.1, C405.4.2, C406.4 Daylight responsive C405.2.3, C405.2.3.1 Dwelling and sleeping units C405.2.4, C405.4.1 Existing buildings C502.1, C502.2.6, C503.1, C503.6, 504.1
Light reduction
Occupant sensor controlsC405.2.1, C405.2.1.1,
C405,2.1.2
Recessed
Retail display C405.4.2.2.1
Specific applications
Time switch controls C405.2.2, C405.2.2.1
LINER SYSTEM (Ls)
Defined
Insulation
LISTED
Defined
Skylights
LOADING DOCK WEATHERSEALS
LOW-ENERGY BUILDINGS
Defined
Roof solar reflectance
Controls
C405.2.2, C405.2.3, C405.2.4
Sealed
Wattage
5

Μ

MAINTENANCE

General
Instructions for equipment and systems C303.3
Owner responsibility
MANUALS
Defined
MASS
FloorTable C402.1 .3, Table C402.1.4
Wall
MATERIALS AND EQUIPMENT

2015 INTERNATIONAL ENERGY CONSERVATION CODE®

MECHANICAL SYSTEMS AND

EQUIPMENT	C403
Existing buildings	
	C502.2.3, C503.4, C504
MECHANICAL VENTILATION	L C403.1, C403.2.6
METERS, ELECTRICAL	C405.6
MOTOR NAMEPLATE	
HORSEPOWER	C403.2.12.2
Efficiency	C405.8
MOVING WALKWAYS	C405.9.2, C405.9.3
MULTIFAMILY	
RESIDENTIAL BUILDINGS	
MULTIPLE ZONE SYSTEMS	C403.4, C403.4.4,
	C403.4.4.5

Ν

NAMEPLATE HORSEPOWER	
Allowable	2
Defined	2
NET FLOOR AREA (see FLOOR AREA, NET)	
NONCONDITIONED SPACE	_
Alterations	2
NONSTANDARD PART LOAD VALUE	
Defined	2
0	

OCCUPANCY

Complex HVAC systems	5
Compliance	C101.4, C101.5
Lighting power	
allowances.	C405.4.2, C405.4.2.1,
C4	05.2.2, Tables C405.4.2(1, 2)
Mixed occupancies	C101.4.1
OCCUPANT SENSOR CO	NTROL
Commissioning	C408.3.1.1
Lighting	
	C403.2.13
Required C405	5.2.1, C405.2.1.1, C405.2.1.2
OFF-HOUR, CONTROLS	C403.2.4.3, C405.2.2.1
ON-SITE RENEWABLE E	NERGY
Defined	C202
Efficiency package	
••••	C402.1, Table C402.1.3,
	Table C402.1.4

OPAQUE DOORS

Defined	
Regulated T	able C402.1.3, C402.1.4, C402.4.4

OPERATING & ORIENTATION Daylight Responsive controls C405.2.3.1 Thermostatic controls C403.2.4.1, C407.5.2.2 Ρ PACKAGED TERMINAL **AIR CONDITIONER (PTAC)** Requirements Table C403.2.3(3) PACKAGED TERMINAL HEAT PUMP Requirements Table C403.2.3(3) PARKING GARAGE VENTILATION. C403.2.6.2 PERMIT (see FEES) Work commencing before permit C107.3 Table C403.2.10, C404.4 PLANS AND SPECIFICATIONS...... C103 PLENUMS Insulation and sealing C403.2.9 Existing buildings C502.2.5 POWER DENSITY......C406.3 POWERED ROOF/WALL VENTILATORS Fan efficiency exemption . . . C403 2 12 3 Р

Fan efficiency exemp	Dtion
PROPOSED DESIGN	
Defined	C202
Requirements	C407
PUBLIC LAVATORY.	
PUMPING SYSTEMS	C403.4.2.3, C404.6,
	C408.2.2.2

R

<i>R</i> -VALUE	
Above-grade walls C402.2.3	3
Defined C202	2
Insulation component method C402.1.3	,
Table C402.1	3
Roof assemblies C402.2.2	2
Slabs on grade C402.2.5	5
Steel stud walls C402.1.4.1, Table C402.1.4.1	
RADIANT HEATING SYSTEM	
Defined	2
Insulation	3

2015 INTERNATIONAL ENERGY CONSERVATION CODE®

INDEX

INDEX

READILY ACCESSIBLE	
Defined C202	2
Lighting controls	1
RECOOLING	4
REFERENCED STANDARDS C106, Chapter 6	
REFRIGERATED WAREHOUSE COOLER	
Defined	,
Requirements C403.2.15	
REFRIGERATED WAREHOUSE FREEZER	
Defined	,
Requirements	
REFRIGERATION EQUIPMENT	
PerformanceC403.2.14, Tables C403.2.14(1, 2)	
REGISTERED DESIGN PROFESSIONAL	
Commissioning C408	;
Defined	
REHEATING	
RENEWABLE/NONDEPLETABLE	
ENERGY SOURCESC406.5)
REPAIR	
Defined	2
Historic buildings	
Requirements	ì
REPLACEMENT MATERIALS	
Replacement fenestration C401.2.1	
REROOFING	
Defined	2
RESET CONTROL	5
RESIDENTIAL BUILDINGS Compliance C101.2, C101.4.1, C101.5	
Compliance C101.2, C101.4.1, C101.5	
Defined	2
ROOF ASSEMBLY	
Air barriers	
Defined C202 Fenestration C402.4.1, C402.4.1.2, C402.4.2,	2
C405.2.3.3	3
Recover	
Reflectance and	
emittance options	
Repairs	
Replacement	
Requirements C303.1.1.1, C402.2.2	
Solar reflectance and	
thermal emittance	5
ROOF RECOVER	
Defined	
Exemption	
ROOF REPAIR	,
Defined	
Exemption	

ROOF REPLACEMENT

Defined	
Requirements	
ROOFTOP MONITOR	
Daylight zones	C405.2.3.2
Defined	C202
Skylights required	C402.4.2
ROOF VENTILATORS	
(see POWERED ROOF/ WALL	. VENTILATORS)
ROOMS WITH FUEL-BURNING	

S

SATURATED CONDENSING	
OATORATED CONDENDING	TEMPERATURE
Defined	
Refrigeration systems	
SCOPE OF CODE	C101.2
SCREW LAMP HOLDERS	
Defined	
Requirements	
SEASONAL ENERGY EFFIC	IENCY
RATIO (SEER)	. Tables C403.2.3(1, 2, 3)
SERVICE WATER HEATING	
Commissioning	C404.11
Defined	C202
Drain water heat recovery	
Efficiency	
Existing buildings	C502.2.4, C503.5, C504.1
Reduced use	
Requirements	
	04.2.1, 404.5, 404.6, 404.7
SETBACK THERMOSTAT.	
SHADING	C403.2.4.2.1, C403.2.4.2.2
SHADING	
SHGC	
(see SOLAR HEAT GAIN (,
(see SOLAR HEAT GAIN C SHUTOFF DAMPERS	C402.5.5, C403.2.4.3
(see SOLAR HEAT GAIN C SHUTOFF DAMPERS SIMULATED PERFORMANC	C402.5.5, C403.2.4.3 E
(see SOLAR HEAT GAIN C SHUTOFF DAMPERS	C402.5.5, C403.2.4.3 E
(see SOLAR HEAT GAIN (SHUTOFF DAMPERS SIMULATED PERFORMANC ALTERNATIVE SIMULATION TOOL	C402.5.5, C403.2.4.3 E
(see SOLAR HEAT GAIN O SHUTOFF DAMPERS SIMULATED PERFORMANC ALTERNATIVE	C402.5.5, C403.2.4.3 E
(see SOLAR HEAT GAIN (SHUTOFF DAMPERS SIMULATED PERFORMANC ALTERNATIVE SIMULATION TOOL (see ENERGY SIMULATIO	C402.5.5, C403.2.4.3 E
(see SOLAR HEAT GAIN (SHUTOFF DAMPERS SIMULATED PERFORMANC ALTERNATIVE SIMULATION TOOL (see ENERGY SIMULATIO SINGLE ZONE	C402.5.5, C403.2.4.3 E C407 N TOOL) C403.3
(see SOLAR HEAT GAIN (SHUTOFF DAMPERS SIMULATED PERFORMANC ALTERNATIVE SIMULATION TOOL (see ENERGY SIMULATIO SINGLE ZONE SIZING Equipment and system SKYLIGHTS	C402.5.5, C403.2.4.3 TOOL) C403.3 C403.2.2 C403.2.2 C403.2.2 C402.1.5, C402.3,
(see SOLAR HEAT GAIN (SHUTOFF DAMPERS SIMULATED PERFORMANC ALTERNATIVE SIMULATION TOOL (see ENERGY SIMULATIO SINGLE ZONE SIZING Equipment and system SKYLIGHTS	C402.5.5, C403.2.4.3 E N TOOL) C403.2.2
(see SOLAR HEAT GAIN (SHUTOFF DAMPERS SIMULATED PERFORMANC ALTERNATIVE SIMULATION TOOL (see ENERGY SIMULATIO SINGLE ZONE SIZING Equipment and system SKYLIGHTS	C402.5.5, C403.2.4.3 TOOL) C403.3 C403.2.2 C403.2.2 C402.1.5, C402.3, 4, C402.4.3.1, C402.4.3.2
(see SOLAR HEAT GAIN (SHUTOFF DAMPERS SIMULATED PERFORMANC ALTERNATIVE SIMULATION TOOL (see ENERGY SIMULATIO SINGLE ZONE SIZING Equipment and system SKYLIGHTS Table C402	C402.5.5, C403.2.4.3 TOOL) C403.3 C403.2.2 C403.2.2 C402.1.5, C402.3, 4, C402.4.3.1, C402.4.3.2 C502.2.2
(see SOLAR HEAT GAIN C SHUTOFF DAMPERS SIMULATED PERFORMANC ALTERNATIVE SIMULATION TOOL (see ENERGY SIMULATIO SINGLE ZONE SIZING Equipment and system SKYLIGHTS Table C402 Additions Air leakage (infiltration) Alterations	C402.5.5, C403.2.4.3 TOOL) N TOOL) C403.3 C403.2.2 C402.1.5, C402.3, 4, C402.4.3.1, C402.4.3.2 C502.2.2 Table C402.5.2 C503.3.3
(see SOLAR HEAT GAIN (SHUTOFF DAMPERS SIMULATED PERFORMANC ALTERNATIVE SIMULATION TOOL (see ENERGY SIMULATIO SINGLE ZONE SIZING Equipment and system SKYLIGHTS Table C402 Additions Air leakage (infiltration) Alterations Curb insulation	C402.5.5, C403.2.4.3 TOOL) N TOOL) C403.3 C403.2.2 C402.1.5, C402.3, 4, C402.4.3.1, C402.4.3.2 C502.2.2 Table C402.5.2 C503.3.3 C402.2.2
(see SOLAR HEAT GAIN C SHUTOFF DAMPERS SIMULATED PERFORMANC ALTERNATIVE SIMULATION TOOL (see ENERGY SIMULATIO SINGLE ZONE SIZING Equipment and system SKYLIGHTS Table C402 Additions Air leakage (infiltration) Alterations	C402.5.5, C403.2.4.3 TOOL) N TOOL) C403.3 C403.2.2 C402.1.5, C402.3, 4, C402.4.3.1, C402.4.3.2 C502.2.2 Table C402.5.2 C503.3.3 C402.2.2

	C402.4.2.2
Lighting controls	
Maximum areaC40	2.4.1, C402.4.1.2
Minimum area	C402.4.2
SLAB-EDGE INSULATION C	303.2.1, C402.2.5
SLEEPING UNIT	
Defined	
Lighting C405.1, C405.2.2, C4	405.2.4, C405.2.3
SMALL ELECTRIC MOTOR	
Defined	C202
Minimum efficiency	C405.8
SNOW MELT AND ICE SYSTEM	
CONTROLS	C403.2.4.5
SOLAR HEAT GAIN COEFFICIENT	
(SHGC) C103.2, Table C303.1	.3(3), C402.4.1.1,
C402.4.3, Table C	,
Defined	C202
Dynamic glazing	
Replacement products	
SPAS	
STAIRWAYS C402.5.4, C40	
C405.2, C405.2.1.1,	Table C405.4.2(2)
STANDARD REFERENCE DESIGN	
Defined	
Defined	
Requirements C407, Tab	les C407.5.1(1, 3)
Requirements C407, Tab STANDARDS, REFERENCED	les C407.5.1(1, 3) .C106, Chapter 6
Requirements C407, Tab STANDARDS, REFERENCED STEEL FRAMING	les C407.5.1(1, 3) .C106, Chapter 6 . Table C402.1 .3 ,
Requirements C407, Tab STANDARDS, REFERENCED STEEL FRAMING Table C4	les C407.5.1(1, 3) .C106, Chapter 6 . Table C402.1 .3 , 02.1.4, C402.1.4.1
Requirements C407, Tab STANDARDS, REFERENCED STEEL FRAMING	les C407.5.1(1, 3) .C106, Chapter 6 . Table C402.1 .3 , 02.1.4, C402.1.4.1 C108
Requirements C407, Tab STANDARDS, REFERENCED STEEL FRAMING	les C407.5.1(1, 3) .C106, Chapter 6 . Table C402.1 .3 , 02.1.4, C402.1.4.1 C108 C108.1
Requirements C407, Tab STANDARDS, REFERENCED STEEL FRAMING	les C407.5.1(1, 3) .C106, Chapter 6 . Table C402.1.3, 02.1.4, C402.1.4.1 C108 C108.1 C108.3
Requirements C407, Tab STANDARDS, REFERENCED STEEL FRAMING	les C407.5.1(1, 3) .C106, Chapter 6 . Table C402.1.3, 02.1.4, C402.1.4.1
Requirements C407, Tab STANDARDS, REFERENCED STEEL FRAMING	les C407.5.1(1, 3) .C106, Chapter 6 . Table C402.1.3, 02.1.4, C402.1.4.1
Requirements	les C407.5.1(1, 3) .C106, Chapter 6 . Table C402.1.3, 02.1.4, C402.1.4.1
Requirements C407, Tab STANDARDS, REFERENCED STEEL FRAMING Table C4 STOP WORK ORDER Authority Emergencies Failure to comply Issuance STOREFRONT Defined	les C407.5.1(1, 3) .C106, Chapter 6 . Table C402.1.3, 02.1.4, C402.1.4.1
Requirements	les C407.5.1(1, 3) .C106, Chapter 6 . Table C402.1.3, 02.1.4, C402.1.4.1
Requirements	les C407.5.1(1, 3) .C106, Chapter 6 . Table C402.1.3, 02.1.4, C402.1.4.1
Requirements	les C407.5.1(1, 3) .C106, Chapter 6 . Table C402.1.3, 02.1.4, C402.1.4.1
Requirements	les C407.5.1(1, 3) .C106, Chapter 6 . Table C402.1.3, 02.1.4, C402.1.4.1 C108 C108.1 C108.3 C108.4 C108.2 C108.2 C202 .Table C402.5.2 C403.4.5.5 C402.2.2

т

TEMPERATURE DEAD BANDC403	.4.3.3.1
TENANT SPACESC	406.1.1
THERMAL CONDUCTANCE (see C-Factor)	
THERMAL MASS (see MASS)	
THERMAL RESISTANCE (see <i>R</i> -VALUE)	
THERMAL TRANSMITTANCE (see U-FACTO	R)
THERMOSTAT	
Defined	C202

2015 INTERNATIONAL ENERGY CONSERVATION CODE®

Requirements	C403.2.4, C403.2.4.1,
	C403.2.4.1.2, C403.2.4.1.3,
	C403.2.4.2, C403.4.4
Setback capabilities	C403.2.4.2
TIME SWITCH CONTROL	
Defined	C202
Requirements	C405.2.2, C405.2.2.1
TOTAL BUILDING PERFO	ORMANCE C407
TOWNHOUSE (see RESID	ENTIAL BUILDINGS)
TRANSFORMERS, ELEC	TRIC Č405.7

U

U-FACTOR
Area-weighted U-factor fenestration C402.4.3.4
Assembly U-, C- or F-factor
method C402.1.4, Table C402.1.4
Component performance alternative C402.1.5
Default door
Default glazed fenestration Table C303.1.3(1)
Defined
Fenestration C401.2.1, C402.4.3, Table C402.4
Skylights Table C402.4, C402.4.3.2
Steel framing

۷

VARIABLE AIR VOLUME SYSTEMS	
(VAV)	
C403.4.4.1, C403.4.	
	able C407.5.1(3)
VARIABLE REFRIGERANT FLOW SYS	
Defined	
Increased efficiencies	C406.2
VENTILATION	C403.2.6
Defined	
Demand controlled ventilation (DCV)	C403.2.6.1
Energy recovery system	403.2.7, C406.6
Parking garages	C403.2.6.2
VENTILATION AIR	
Defined	C202
Energy recovery	C403.2.7
Fan controls	C403.4.1.1
Kitchen exhaust	C403.2.8
VERTICAL FENESTRATION (see FEN	ESTRATION)
VESTIBULES	C402.5.7
VISIBLE TRANSMITTANCE (VT)	
Default glazed fenestration Ta	ble C303.1.3(3)
Defined	C202
Dynamic glazing	
Increased fenestration	
SkylightsC402.	
, , , , , , , , , , , , , , , , , , , ,	,

INDEX

INDEX

W		
WALK-IN COOLER		
Defined		
Requirements		
WALK-IN FREEZER		
Defined		
Requirements		
WALL		
Above-grade wall, defined		
Thermal resistance C402.2.3, Table C402.1.3,		
Table C402.1.4		
Below-grade wall, defined C202		
Thermal resistance		
Table C402.1.4, C402.1.5		
Crawlspace wall, defined		
Exterior wall, defined		
Steel framedC402.1.4.1, Table C402.1.4.1		
WALLS (see EXTERIOR WALLS AND		
ENVELOPE, BUILDING THERMAL) WALLS ADJACENT TO UNCONDITIONED		
SPACE (see BUILDING THERMAL ENVELOPE)		
WALL VENTILATORS		
(see POWERED ROOF/ WALL VENTILATORS)		
WATER ECONOMIZER		
C403.3.4.1, C403.3.4.2		
WATER HEATER		
Defined		
Efficiency Table C404.2, C404.2.1		
WATER HEATING C404, Table C404.2		
WINDOW AREA	J	

(see FENESTRATION and GLAZING AREA)

Ζ

C403.4, C407.5.2.1, C407.5.2.2

INDEX